State-of-charge estimation of lithium-ion battery based on second order resistor-capacitance circuit-PSO-TCN model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.130025
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios," Energy, Elsevier, vol. 263(PB).
- Ding, Xiaofeng & Zhang, Donghuai & Cheng, Jiawei & Wang, Binbin & Luk, Patrick Chi Kwong, 2019. "An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles," Applied Energy, Elsevier, vol. 254(C).
- Chen, Junxiong & Feng, Xiong & Jiang, Lin & Zhu, Qiao, 2021. "State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network," Energy, Elsevier, vol. 227(C).
- Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
- Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
- Chen, Zhijie & Zuo, Wei & Zhou, Kun & Li, Qingqing & Yi, Zhengming & Huang, Yuhan, 2024. "Numerical investigation on the performance enhancement of PEMFC with gradient sinusoidal-wave fins in cathode channel," Energy, Elsevier, vol. 288(C).
- Zhao, Xu & Chen, Yongan & Chen, Luowen & Chen, Ning & Wang, Hao & Huang, Wei & Chen, Jiayao, 2023. "On full-life-cycle SOC estimation for lithium batteries by a variable structure based fractional-order extended state observer," Applied Energy, Elsevier, vol. 351(C).
- Deng, Zhongwei & Hu, Xiaosong & Lin, Xianke & Che, Yunhong & Xu, Le & Guo, Wenchao, 2020. "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy, Elsevier, vol. 205(C).
- Fan, Xinyuan & Zhang, Weige & Zhang, Caiping & Chen, Anci & An, Fulai, 2022. "SOC estimation of Li-ion battery using convolutional neural network with U-Net architecture," Energy, Elsevier, vol. 256(C).
- Guo, Shanshan & Ma, Liang, 2023. "A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation," Energy, Elsevier, vol. 263(PC).
- Feng, Xiong & Chen, Junxiong & Zhang, Zhongwei & Miao, Shuwen & Zhu, Qiao, 2021. "State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network," Energy, Elsevier, vol. 236(C).
- Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
- Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
- Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
- Hanlei Sun & Jianrui Sun & Kun Zhao & Licheng Wang & Kai Wang & Mohammad Yaghoub Abdollahzadeh Jamalabadi, 2022. "Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, March.
- Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Jinping & Wang, Hongyang & Liu, Xiaomin & Zhu, Junjie & Novakovic, Vojislav & Karkon, Ehsan Gholamian, 2024. "Study on the effects of acetone and R141b on the performance of micro heat pipe PV/T systems," Energy, Elsevier, vol. 297(C).
- Zuo, Wei & Li, Dexin & Li, Qingqing & Cheng, Qianju & Huang, Yuhan, 2024. "Effects of intermittent pulsating flow on the performance of multi-channel cold plate in electric vehicle lithium-ion battery pack," Energy, Elsevier, vol. 294(C).
- Zuo, Wei & Wang, Zijie & Li, Qingqing & Zhou, Kun & Huang, Yuhan, 2024. "Numerical investigations on the performance enhancement of a hydrogen-fueled micro planar combustor with finned bluff body for thermophotovoltaic applications," Energy, Elsevier, vol. 293(C).
- Zhang, Chengzhong & Zhao, Hongyu & Wang, Liye & Liao, Chenglin & Wang, Lifang, 2024. "A comparative study on state-of-charge estimation for lithium-rich manganese-based battery based on Bayesian filtering and machine learning methods," Energy, Elsevier, vol. 306(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yu, Hanqing & Zhang, Lisheng & Wang, Wentao & Li, Shen & Chen, Siyan & Yang, Shichun & Li, Junfu & Liu, Xinhua, 2023. "State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries," Energy, Elsevier, vol. 278(C).
- Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
- Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
- Qi, Wei & Qin, Wenhu & Yun, Zhonghua, 2024. "Closed-loop state of charge estimation of Li-ion batteries based on deep learning and robust adaptive Kalman filter," Energy, Elsevier, vol. 307(C).
- Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
- Molla Shahadat Hossain Lipu & Tahia F. Karim & Shaheer Ansari & Md. Sazal Miah & Md. Siddikur Rahman & Sheikh T. Meraj & Rajvikram Madurai Elavarasan & Raghavendra Rajan Vijayaraghavan, 2022. "Intelligent SOX Estimation for Automotive Battery Management Systems: State-of-the-Art Deep Learning Approaches, Open Issues, and Future Research Opportunities," Energies, MDPI, vol. 16(1), pages 1-31, December.
- Zafar, Muhammad Hamza & Khan, Noman Mujeeb & Houran, Mohamad Abou & Mansoor, Majad & Akhtar, Naureen & Sanfilippo, Filippo, 2024. "A novel hybrid deep learning model for accurate state of charge estimation of Li-Ion batteries for electric vehicles under high and low temperature," Energy, Elsevier, vol. 292(C).
- Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
- Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
- Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
- Wang, Ya-Xiong & Chen, Zhenhang & Zhang, Wei, 2022. "Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning," Energy, Elsevier, vol. 244(PB).
- Jiang, Bo & Tao, Siyi & Wang, Xueyuan & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "Mechanics-based state of charge estimation for lithium-ion pouch battery using deep learning technique," Energy, Elsevier, vol. 278(PA).
- Chai, Xuqing & Li, Shihao & Liang, Fengwei, 2024. "A novel battery SOC estimation method based on random search optimized LSTM neural network," Energy, Elsevier, vol. 306(C).
- Yan Cheng & Xuesen Zhang & Xiaoqiang Wang & Jianhua Li, 2022. "Battery State of Charge Estimation Based on Composite Multiscale Wavelet Transform," Energies, MDPI, vol. 15(6), pages 1-16, March.
- Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
- Yang, Fangfang & Zhang, Shaohui & Li, Weihua & Miao, Qiang, 2020. "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy, Elsevier, vol. 201(C).
- Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
- Kuo Yang & Yugui Tang & Zhen Zhang, 2021. "Parameter Identification and State-of-Charge Estimation for Lithium-Ion Batteries Using Separated Time Scales and Extended Kalman Filter," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Fan, Xinyuan & Zhang, Weige & Zhang, Caiping & Chen, Anci & An, Fulai, 2022. "SOC estimation of Li-ion battery using convolutional neural network with U-Net architecture," Energy, Elsevier, vol. 256(C).
- Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.
More about this item
Keywords
Lithium-ion battery; State of charge estimation; Parameter identification; PSO algorithm; OCV-SOC curve; TCN;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034199. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.