IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p382-d478834.html
   My bibliography  Save this article

Variable-Gain Super-Twisting Sliding Mode Damping Control of Series-Compensated DFIG-Based Wind Power System for SSCI Mitigation

Author

Listed:
  • Ronglin Ma

    (School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Yaozhen Han

    (School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Weigang Pan

    (School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China)

Abstract

Subsynchronous oscillation, caused by the interaction between the rotor side converter (RSC) control of the doubly fed induction generator (DFIG) and series-compensated transmission line, is an alleged subsynchronous control interaction (SSCI). SSCI can cause DFIGs to go offline and crowbar circuit breakdown, and then deteriorate power system stability. This paper proposes a novel adaptive super-twisting sliding mode SSCI mitigation method for series-compensated DFIG-based wind power systems. Rotor currents were constrained to track the reference values which are determined by maximum power point tracking (MPPT) and reactive power demand. Super-twisting control laws were designed to generate RSC control signals. True adaptive and non-overestimated control gains were conceived with the aid of barrier function, without need of upper bound of uncertainty derivatives. Stability proof of the studied closed-loop power system was demonstrated in detail with the help of the Lyapunov method. Time-domain simulation for 100 MW aggregated DFIG wind farm was executed on MATLAB/Simulink platform. Some comparative simulation results with conventional PI control, partial feedback linearization control, and first-order sliding mode were also obtained, which verify the validity, robustness, and superiority of the proposed control strategy.

Suggested Citation

  • Ronglin Ma & Yaozhen Han & Weigang Pan, 2021. "Variable-Gain Super-Twisting Sliding Mode Damping Control of Series-Compensated DFIG-Based Wind Power System for SSCI Mitigation," Energies, MDPI, vol. 14(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:382-:d:478834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shair, Jan & Xie, Xiaorong & Yan, Gangui, 2019. "Mitigating subsynchronous control interaction in wind power systems: Existing techniques and open challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 330-346.
    2. Yaozhen Han & Ronglin Ma, 2019. "Adaptive-Gain Second-Order Sliding Mode Direct Power Control for Wind-Turbine-Driven DFIG under Balanced and Unbalanced Grid Voltage," Energies, MDPI, vol. 12(20), pages 1-18, October.
    3. Ana Susperregui & Juan Manuel Herrero & Miren Itsaso Martinez & Gerardo Tapia-Otaegui & Xavier Blasco, 2019. "Multi-Objective Optimisation-Based Tuning of Two Second-Order Sliding-Mode Controller Variants for DFIGs Connected to Non-Ideal Grid Voltage," Energies, MDPI, vol. 12(19), pages 1-26, October.
    4. Yingzong Jiao & Feng Li & Hui Dai & Heng Nian, 2020. "Analysis and Mitigation of Sub-Synchronous Resonance for Doubly Fed Induction Generator under VSG Control," Energies, MDPI, vol. 13(7), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    2. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    3. Adolfo Dannier & Gianluca Brando & Marino Coppola, 2022. "Special Issue on Power Converter of Electric Machines, Renewable Energy Systems, and Transportation," Energies, MDPI, vol. 15(3), pages 1-3, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habib Benbouhenni & Zinelaabidine Boudjema & Nicu Bizon & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy," Energies, MDPI, vol. 15(10), pages 1-25, May.
    2. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    3. Ahmed Sobhy & Ahmed G. Abo-Khalil & Dong Lei & Tareq Salameh & Adel Merabet & Malek Alkasrawi, 2022. "Coupling DFIG-Based Wind Turbines with the Grid under Voltage Imbalance Conditions," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    4. Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Thaned Rojsiraphisal & Andrzej Bartoszewicz, 2022. "Damping of Subsynchronous Resonance in Utility DFIG-Based Wind Farms Using Wide-Area Fuzzy Control Approach," Energies, MDPI, vol. 15(5), pages 1-15, February.
    5. Habib Benbouhenni & Nicu Bizon & Ilhami Colak & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Simplified Super Twisting Sliding Mode Approaches of the Double-Powered Induction Generator-Based Multi-Rotor Wind Turbine System," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    6. Uvini Perera & Amanullah Maung Than Oo & Ramon Zamora, 2022. "Sub Synchronous Oscillations under High Penetration of Renewables—A Review of Existing Monitoring and Damping Methods, Challenges, and Research Prospects," Energies, MDPI, vol. 15(22), pages 1-23, November.
    7. Shair, Jan & Xie, Xiaorong & Liu, Wei & Li, Xuan & Li, Haozhi, 2021. "Modeling and stability analysis methods for investigating subsynchronous control interaction in large-scale wind power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Xiangwu Yan & Wenfei Chang & Sen Cui & Aazim Rasool & Jiaoxin Jia & Ying Sun, 2021. "Recurrence of Sub-Synchronous Oscillation Accident of Hornsea Wind Farm in UK and Its Suppression Strategy," Energies, MDPI, vol. 14(22), pages 1-13, November.
    9. Faris Alatar & Ali Mehrizi-Sani, 2021. "Frequency Scan–Based Mitigation Approach of Subsynchronous Control Interaction in Type-3 Wind Turbines," Energies, MDPI, vol. 14(15), pages 1-13, July.
    10. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Yaozhen Han & Shuzhen Li & Cuiqi Du, 2020. "Adaptive Higher-Order Sliding Mode Control of Series-Compensated DFIG-Based Wind Farm for Sub-Synchronous Control Interaction Mitigation," Energies, MDPI, vol. 13(20), pages 1-21, October.
    12. Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
    13. Han, Jiangbei & Liu, Chengxi, 2023. "Performance evaluation of SSCI damping controller based on the elastic energy equivalent system," Applied Energy, Elsevier, vol. 331(C).
    14. Lasantha Meegahapola & Siqi Bu, 2021. "Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”," Energies, MDPI, vol. 14(12), pages 1-4, June.
    15. Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Afef Fekih & Wudhichai Assawinchaichote, 2022. "A Wide-Area Fuzzy Control Design with Latency Compensation to Mitigate Sub-Synchronous Resonance in DFIG-Based Wind Farms," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:382-:d:478834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.