IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3680-d578593.html
   My bibliography  Save this article

Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”

Author

Listed:
  • Lasantha Meegahapola

    (Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne 3001, Australia)

  • Siqi Bu

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China)

Abstract

Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to the clean and low-carbon renewable energy sources [...]

Suggested Citation

  • Lasantha Meegahapola & Siqi Bu, 2021. "Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”," Energies, MDPI, vol. 14(12), pages 1-4, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3680-:d:578593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yafeng Hao & Jun Liang & Kewen Wang & Guanglu Wu & Tibin Joseph & Ruijuan Sun, 2020. "Influence of Active Power Output and Control Parameters of Full-Converter Wind Farms on Sub-Synchronous Oscillation Characteristics in Weak Grids," Energies, MDPI, vol. 13(19), pages 1-17, October.
    2. Yi-Wei Chen & Yuan-Yih Hsu, 2020. "Flexible Kinetic Energy Release Controllers for a Wind Farm in an Islanding System," Energies, MDPI, vol. 13(22), pages 1-15, November.
    3. Jianqiang Luo & Siqi Bu & Jiebei Zhu, 2020. "Transition from Electromechanical Dynamics to Quasi-Electromechanical Dynamics Caused by Participation of Full Converter-Based Wind Power Generation," Energies, MDPI, vol. 13(23), pages 1-19, November.
    4. Hongwei Li & Kaide Ren & Shuaibing Li & Haiying Dong, 2020. "Adaptive Multi-Model Switching Predictive Active Power Control Scheme for Wind Generator System," Energies, MDPI, vol. 13(6), pages 1-12, March.
    5. Jiaxin Wen & Siqi Bu & Bowen Zhou & Qiyu Chen & Dongsheng Yang, 2020. "A Fast-Algorithmic Probabilistic Evaluation on Regional Rate of Change of Frequency (RoCoF) for Operational Planning of High Renewable Penetrated Power Systems," Energies, MDPI, vol. 13(11), pages 1-14, June.
    6. Pei Zhang & Chunping Li & Chunhua Peng & Jiangang Tian, 2020. "Ultra-Short-Term Prediction of Wind Power Based on Error Following Forget Gate-Based Long Short-Term Memory," Energies, MDPI, vol. 13(20), pages 1-13, October.
    7. Yuan Li & Zengjin Xu & Zuoxia Xing & Bowen Zhou & Haoqian Cui & Bowen Liu & Bo Hu, 2020. "A Modified Reynolds-Averaged Navier–Stokes-Based Wind Turbine Wake Model Considering Correction Modules," Energies, MDPI, vol. 13(17), pages 1-19, August.
    8. Sijia Tu & Bingda Zhang & Xianglong Jin, 2019. "Research on DFIG-ES System to Enhance the Fast-Frequency Response Capability of Wind Farms," Energies, MDPI, vol. 12(18), pages 1-20, September.
    9. Bingchun Liu & Shijie Zhao & Xiaogang Yu & Lei Zhang & Qingshan Wang, 2020. "A Novel Deep Learning Approach for Wind Power Forecasting Based on WD-LSTM Model," Energies, MDPI, vol. 13(18), pages 1-17, September.
    10. Ting-Hsuan Chien & Yu-Chuan Huang & Yuan-Yih Hsu, 2020. "Neural Network-Based Supplementary Frequency Controller for a DFIG Wind Farm," Energies, MDPI, vol. 13(20), pages 1-15, October.
    11. Yingzong Jiao & Feng Li & Hui Dai & Heng Nian, 2020. "Analysis and Mitigation of Sub-Synchronous Resonance for Doubly Fed Induction Generator under VSG Control," Energies, MDPI, vol. 13(7), pages 1-17, April.
    12. Alija Mujcinagic & Mirza Kusljugic & Emir Nukic, 2020. "Wind Inertial Response Based on the Center of Inertia Frequency of a Control Area," Energies, MDPI, vol. 13(23), pages 1-17, November.
    13. Yurong Wang & Ruolin Yang & Sixuan Xu & Yi Tang, 2020. "Capacity Planning of Distributed Wind Power Based on a Variable-Structure Copula Involving Energy Storage Systems," Energies, MDPI, vol. 13(14), pages 1-21, July.
    14. Xiangwu Yan & Linlin Yang & Tiecheng Li, 2021. "The LVRT Control Scheme for PMSG-Based Wind Turbine Generator Based on the Coordinated Control of Rotor Overspeed and Supercapacitor Energy Storage," Energies, MDPI, vol. 14(2), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Wyleżałek, 2021. "Dilemmas around the Energy Transition in the Perspective of Peter Blau’s Social Exchange Theory," Energies, MDPI, vol. 14(24), pages 1-10, December.
    2. Tomasz Popławski & Sebastian Dudzik & Piotr Szeląg & Janusz Baran, 2021. "A Case Study of a Virtual Power Plant (VPP) as a Data Acquisition Tool for PV Energy Forecasting," Energies, MDPI, vol. 14(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianqiang Luo & Yiqing Zou & Siqi Bu & Ulas Karaagac, 2021. "Converter-Driven Stability Analysis of Power Systems Integrated with Hybrid Renewable Energy Sources," Energies, MDPI, vol. 14(14), pages 1-20, July.
    2. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    3. Hua Li & Zhen Wang & Binbin Shan & Lingling Li, 2022. "Research on Multi-Step Prediction of Short-Term Wind Power Based on Combination Model and Error Correction," Energies, MDPI, vol. 15(22), pages 1-21, November.
    4. Tang, Yugui & Yang, Kuo & Zheng, Yichu & Ma, Li & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A transfer learning approach incorporating temporal convolution and adversarial training," Renewable Energy, Elsevier, vol. 224(C).
    5. Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
    6. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    7. Qiuhong Huang & Xiao Wang, 2022. "A Forecasting Model of Wind Power Based on IPSO–LSTM and Classified Fusion," Energies, MDPI, vol. 15(15), pages 1-19, July.
    8. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Tomasz Popławski & Sebastian Dudzik & Piotr Szeląg & Janusz Baran, 2021. "A Case Study of a Virtual Power Plant (VPP) as a Data Acquisition Tool for PV Energy Forecasting," Energies, MDPI, vol. 14(19), pages 1-24, September.
    10. Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Thaned Rojsiraphisal & Andrzej Bartoszewicz, 2022. "Damping of Subsynchronous Resonance in Utility DFIG-Based Wind Farms Using Wide-Area Fuzzy Control Approach," Energies, MDPI, vol. 15(5), pages 1-15, February.
    11. Xiaoyu Deng & Ruo Mo & Pengliang Wang & Junru Chen & Dongliang Nan & Muyang Liu, 2023. "Review of RoCoF Estimation Techniques for Low-Inertia Power Systems," Energies, MDPI, vol. 16(9), pages 1-19, April.
    12. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
    13. Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.
    14. Dezhi Ma & Wenyi Li, 2022. "Wind-Storage Combined Virtual Inertial Control Based on Quantization and Regulation Decoupling of Active Power Increments," Energies, MDPI, vol. 15(14), pages 1-20, July.
    15. Zhou, Gaoyu & Hu, Guofeng & Zhang, Daxing & Zhang, Yun, 2023. "A novel algorithm system for wind power prediction based on RANSAC data screening and Seq2Seq-Attention-BiGRU model," Energy, Elsevier, vol. 283(C).
    16. Yang, Mao & Han, Chao & Zhang, Wei & Wang, Bo, 2024. "A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information," Energy, Elsevier, vol. 294(C).
    17. Xiangwu Yan & Wenfei Chang & Sen Cui & Aazim Rasool & Jiaoxin Jia & Ying Sun, 2021. "Recurrence of Sub-Synchronous Oscillation Accident of Hornsea Wind Farm in UK and Its Suppression Strategy," Energies, MDPI, vol. 14(22), pages 1-13, November.
    18. Jianghong Chen & Teng Yuan & Xuelian Li & Weiliang Li & Ximu Wang, 2023. "Research on Coordinated Control Strategy of DFIG-ES System Based on Fuzzy Control," Energies, MDPI, vol. 16(12), pages 1-12, June.
    19. Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt & Tomasz Gulczyński, 2022. "Advanced Ensemble Methods Using Machine Learning and Deep Learning for One-Day-Ahead Forecasts of Electric Energy Production in Wind Farms," Energies, MDPI, vol. 15(4), pages 1-30, February.
    20. Bruno Augusto Bastiani & Ricardo Vasques de Oliveira, 2023. "Frequency Dynamics of Power Systems with Inertial Response Support from Wind Generation," Energies, MDPI, vol. 16(14), pages 1-21, July.

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3680-:d:578593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.