IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1402-d749689.html
   My bibliography  Save this article

A Wide-Area Fuzzy Control Design with Latency Compensation to Mitigate Sub-Synchronous Resonance in DFIG-Based Wind Farms

Author

Listed:
  • Yaser Bostani

    (Department of Electrical Engineering, University of Zanjan, Zanjan 45371-38791, Iran
    Design and Development Part, Guilan Regional Electric Company, Rasht 41377-18775, Iran)

  • Saeid Jalilzadeh

    (Department of Electrical Engineering, University of Zanjan, Zanjan 45371-38791, Iran)

  • Saleh Mobayen

    (Department of Electrical Engineering, University of Zanjan, Zanjan 45371-38791, Iran
    Future Technology Research Center, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan)

  • Afef Fekih

    (Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-3890, USA)

  • Wudhichai Assawinchaichote

    (Department of Electronic and Telecommunication Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand)

Abstract

This paper proposes an auxiliary damping control approach based on the wide-area measurement system (WAMS). Its main objective is to mitigate sub-synchronous resonance (SSR) in doubly fed induction generator (DFIG)-based wind farms connected to a series capacitive compensated transmission network. To mitigate the delay in sending measurement signals, typically associated with wide-area measurement systems, a fuzzy logic wide-area damping controller (FLWADC) is considered to mitigate the time delay caused by the phasor measurement unit (PMU) measurement. The FLWADC is a supplementary signal at the stator voltage of the grid-side converter (GSC) of the DFIG-based wind farms. The FLWADC was executed by using the voltage and capacitor voltage variations of the series capacitive compensated transmission network. The effectiveness and validity of the proposed auxiliary damping control was verified using a modified scheme of the IEEE first benchmark model via time-area simulation analysis using MATLAB/Simulink.

Suggested Citation

  • Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Afef Fekih & Wudhichai Assawinchaichote, 2022. "A Wide-Area Fuzzy Control Design with Latency Compensation to Mitigate Sub-Synchronous Resonance in DFIG-Based Wind Farms," Energies, MDPI, vol. 15(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1402-:d:749689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingzong Jiao & Feng Li & Hui Dai & Heng Nian, 2020. "Analysis and Mitigation of Sub-Synchronous Resonance for Doubly Fed Induction Generator under VSG Control," Energies, MDPI, vol. 13(7), pages 1-17, April.
    2. Xiong, Hualin & Egusquiza, Mònica & Alberg Østergaard, Poul & Pérez-Díaz, Juan I. & Sun, Guoxiu & Egusquiza, Eduard & Patelli, Edoardo & Xu, Beibei & Duan, Hongjiang & Chen, Diyi & Luo, Xingqi, 2021. "Multi-objective optimization of a hydro-wind-photovoltaic power complementary plant with a vibration avoidance strategy," Applied Energy, Elsevier, vol. 301(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
    2. Guo, Su & Zheng, Kun & He, Yi & Kurban, Aynur, 2023. "The artificial intelligence-assisted short-term optimal scheduling of a cascade hydro-photovoltaic complementary system with hybrid time steps," Renewable Energy, Elsevier, vol. 202(C), pages 1169-1189.
    3. Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Thaned Rojsiraphisal & Andrzej Bartoszewicz, 2022. "Damping of Subsynchronous Resonance in Utility DFIG-Based Wind Farms Using Wide-Area Fuzzy Control Approach," Energies, MDPI, vol. 15(5), pages 1-15, February.
    4. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    5. Hu, Wenyu & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Ma, Yinjie & Leng, Erwei, 2022. "Investigation on cooperative mechanism between convective wind energy harvesting and dust collection during vehicle driving on the highway," Energy, Elsevier, vol. 260(C).
    6. Yan, Donglin & Zheng, Yang & Liu, Wanying & Chen, Tianya & Chen, Qijuan, 2022. "Interval uncertainty analysis of vibration response of hydroelectric generating unit based on Chebyshev polynomial," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. Xiangwu Yan & Wenfei Chang & Sen Cui & Aazim Rasool & Jiaoxin Jia & Ying Sun, 2021. "Recurrence of Sub-Synchronous Oscillation Accident of Hornsea Wind Farm in UK and Its Suppression Strategy," Energies, MDPI, vol. 14(22), pages 1-13, November.
    8. Cheng, Qian & Liu, Pan & Feng, Maoyuan & Cheng, Lei & Ming, Bo & Luo, Xinran & Liu, Weibo & Xu, Weifeng & Huang, Kangdi & Xia, Jun, 2023. "Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency," Applied Energy, Elsevier, vol. 339(C).
    9. Alharbi, Talal & Abo-Elyousr, Farag K. & Abdelshafy, Alaaeldin M., 2024. "Efficient Coordination of Renewable Energy Resources through Optimal Reversible Pumped Hydro-Storage Integration for Autonomous Microgrid Economic Operation," Energy, Elsevier, vol. 304(C).
    10. Zhang, Yusheng & Zhao, Xuehua & Wang, Xin & Li, Aiyun & Wu, Xinhao, 2023. "Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity," Energy, Elsevier, vol. 284(C).
    11. Lianda Duan & Dekuan Wang & Guiping Wang & Changlin Han & Weijun Zhang & Xiaobo Liu & Cong Wang & Zheng Che & Chang Chen, 2022. "Piecewise Causality Study between Power Load and Vibration in Hydro-Turbine Generator Unit for a Low-Carbon Era," Energies, MDPI, vol. 15(3), pages 1-13, February.
    12. Cheng, Qian & Liu, Pan & Xia, Jun & Ming, Bo & Cheng, Lei & Chen, Jie & Xie, Kang & Liu, Zheyuan & Li, Xiao, 2022. "Contribution of complementary operation in adapting to climate change impacts on a large-scale wind–solar–hydro system: A case study in the Yalong River Basin, China," Applied Energy, Elsevier, vol. 325(C).
    13. Jia, Rui & He, Mengjiao & Zhang, Xinyu & Zhao, Ziwen & Han, Shuo & Jurasz, Jakub & Chen, Diyi & Xu, Beibei, 2022. "Optimal operation of cascade hydro-wind-photovoltaic complementary generation system with vibration avoidance strategy," Applied Energy, Elsevier, vol. 324(C).
    14. Lei, Liuwei & Li, Feng & Xu, Beibei & Egusquiza, Mònica & Luo, Xingqi & Zhang, Junzhi & Egusquiza, Eduard & Chen, Diyi & Jiang, Wei & Patelli, Edoardo, 2022. "Time-frequency domain characteristics analysis of a hydro-turbine governor system considering vortex rope excitation," Renewable Energy, Elsevier, vol. 183(C), pages 172-187.
    15. Wang, Fengjuan & Xu, Jiuping & Wang, Qingchun, 2024. "Complementary operation based sizing and scheduling strategy for hybrid hydro-PV-wind generation systems connected to long-distance transmission lines," Applied Energy, Elsevier, vol. 364(C).
    16. Han, Shuo & Yuan, Yifan & He, Mengjiao & Zhao, Ziwen & Xu, Beibei & Chen, Diyi & Jurasz, Jakub, 2024. "A novel day-ahead scheduling model to unlock hydropower flexibility limited by vibration zones in hydropower-variable renewable energy hybrid system," Applied Energy, Elsevier, vol. 356(C).
    17. Kangping Wang & Pengjiang Ge & Naixin Duan & Jili Wang & Jinli Lv & Meng Liu & Bin Wang, 2023. "The Multi-Objective Optimal Scheduling of the Water–Wind–Light Complementary System Based on an Improved Pigeon Flock Algorithm," Energies, MDPI, vol. 16(19), pages 1-18, September.
    18. Lasantha Meegahapola & Siqi Bu, 2021. "Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”," Energies, MDPI, vol. 14(12), pages 1-4, June.
    19. He, Mengjiao & Han, Shuo & Chen, Diyi & Zhao, Ziwen & Jurasz, Jakub & Mahmud, Md Apel & Liu, Pan & Deng, Mingjiang, 2024. "Optimizing cascade Hydropower-VRE hybrid systems: A novel approach addressing whole-process vibration to enhance operational safety," Energy, Elsevier, vol. 304(C).
    20. Zhou, Xing & Hu, Xinyi & Huang, Quanshui & Wu, Hegao & Tang, Xiaodan & Cervantes, Michel J., 2024. "Optimization design of an innovative francis draft tube: Insight into improving operational flexibility," Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1402-:d:749689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.