IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8477-d971597.html
   My bibliography  Save this article

Sub Synchronous Oscillations under High Penetration of Renewables—A Review of Existing Monitoring and Damping Methods, Challenges, and Research Prospects

Author

Listed:
  • Uvini Perera

    (Department of Electrical and Electronic Engineering, Auckland University of Technology (AUT), Auckland 1010, New Zealand)

  • Amanullah Maung Than Oo

    (Department of Electrical and Electronic Engineering, Auckland University of Technology (AUT), Auckland 1010, New Zealand)

  • Ramon Zamora

    (Department of Electrical and Electronic Engineering, Auckland University of Technology (AUT), Auckland 1010, New Zealand)

Abstract

With the recent developments in renewable energy generation and addition of power electronic devices, power system dynamics have become extremely complex. One of the challenges faced due to this transition is the sub synchronous oscillations caused by the interaction of renewable energy sources and various components of the power grid. Recently reported incidents due to sub synchronous oscillations highlight the need of monitoring and suppression of these harmful oscillations in real time. This paper gives an overview of the phenomena of sub synchronous oscillations and discusses the existing monitoring and damping techniques along with their limitations. Further, it highlights the research trends along this path.

Suggested Citation

  • Uvini Perera & Amanullah Maung Than Oo & Ramon Zamora, 2022. "Sub Synchronous Oscillations under High Penetration of Renewables—A Review of Existing Monitoring and Damping Methods, Challenges, and Research Prospects," Energies, MDPI, vol. 15(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8477-:d:971597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shair, Jan & Xie, Xiaorong & Yan, Gangui, 2019. "Mitigating subsynchronous control interaction in wind power systems: Existing techniques and open challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 330-346.
    2. Zaijun Wu & Chanxia Zhu & Minqiang Hu, 2012. "Supplementary Controller Design for SSR Damping in a Series-Compensated DFIG-Based Wind Farm," Energies, MDPI, vol. 5(11), pages 1-16, November.
    3. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oluwafemi Emmanuel Oni & Omowunmi Mary Longe, 2023. "Analysis of Secondary Controller on MTDC Link with Solar PV Integration for Inter-Area Power Oscillation Damping," Energies, MDPI, vol. 16(17), pages 1-18, August.
    2. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    3. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    4. Russeil, Valentin & Lo Seen, Danny & Broust, François & Bonin, Muriel & Praene, Jean-Philippe, 2023. "Food and electricity self-sufficiency trade-offs in Reunion Island: Modelling land-use change scenarios with stakeholders," Land Use Policy, Elsevier, vol. 132(C).
    5. Zhang, Tengxi & Xin, Li & Wang, Shunjiang & Guo, Ren & Wang, Wentao & Cui, Jia & Wang, Peng, 2024. "A novel approach of energy and reserve scheduling for hybrid power systems: Frequency security constraints," Applied Energy, Elsevier, vol. 361(C).
    6. Imed Khabbouchi & Dhaou Said & Aziz Oukaira & Idir Mellal & Lyes Khoukhi, 2023. "Machine Learning and Game-Theoretic Model for Advanced Wind Energy Management Protocol (AWEMP)," Energies, MDPI, vol. 16(5), pages 1-15, February.
    7. Giorgio M. Giannuzzi & Viktoriya Mostova & Cosimo Pisani & Salvatore Tessitore & Alfredo Vaccaro, 2022. "Enabling Technologies for Enhancing Power System Stability in the Presence of Converter-Interfaced Generators," Energies, MDPI, vol. 15(21), pages 1-13, October.
    8. Ruiz-García, A. & Tadeo, F. & Nuez, I., 2023. "Role of permeability coefficients in salinity gradient energy generation by PRO systems with spiral wound membrane modules," Renewable Energy, Elsevier, vol. 215(C).
    9. Shair, Jan & Xie, Xiaorong & Liu, Wei & Li, Xuan & Li, Haozhi, 2021. "Modeling and stability analysis methods for investigating subsynchronous control interaction in large-scale wind power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Pepiciello, Antonio & Domínguez-García, José Luis, 2024. "Small-signal stability analysis of uncertain power systems: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    11. Shao, Han & Henriques, Rui & Morais, Hugo & Tedeschi, Elisabetta, 2024. "Power quality monitoring in electric grid integrating offshore wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Faris Alatar & Ali Mehrizi-Sani, 2021. "Frequency Scan–Based Mitigation Approach of Subsynchronous Control Interaction in Type-3 Wind Turbines," Energies, MDPI, vol. 14(15), pages 1-13, July.
    13. Rodrigo Trentini & Rüdiger Kutzner & John J. A. Saldanha & Ademir Nied & Tiago Jackson May Dezuo & Mariana Santos Matos Cavalca, 2023. "A Comprehensive Analysis of the Penetration of Detailed Type 4 Wind Turbine Generators in the Two-Area Benchmark System," Energies, MDPI, vol. 16(13), pages 1-19, June.
    14. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    15. Abid, Md. Shadman & Ahshan, Razzaqul & Al Abri, Rashid & Al-Badi, Abdullah & Albadi, Mohammed, 2024. "Techno-economic and environmental assessment of renewable energy sources, virtual synchronous generators, and electric vehicle charging stations in microgrids," Applied Energy, Elsevier, vol. 353(PA).
    16. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Virulkar, V.B. & Gotmare, G.V., 2016. "Sub-synchronous resonance in series compensated wind farm: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1010-1029.
    18. Hartani, Mohamed Amine & Rezk, Hegazy & Benhammou, Aissa & Hamouda, Messaoud & Abdelkhalek, Othmane & Mekhilef, Saad & Olabi, A.G., 2023. "Proposed frequency decoupling-based fuzzy logic control for power allocation and state-of-charge recovery of hybrid energy storage systems adopting multi-level energy management for multi-DC-microgrid," Energy, Elsevier, vol. 278(C).
    19. L., Lavanya & Swarup, K.S., 2024. "Inertia monitoring in power systems: Critical features, challenges, and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    20. Xiao, Kun & Yu, Bolin & Cheng, Lei & Li, Fei & Fang, Debin, 2022. "The effects of CCUS combined with renewable energy penetration under the carbon peak by an SD-CGE model: Evidence from China," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8477-:d:971597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.