IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5014-d799363.html
   My bibliography  Save this article

Simplified Super Twisting Sliding Mode Approaches of the Double-Powered Induction Generator-Based Multi-Rotor Wind Turbine System

Author

Listed:
  • Habib Benbouhenni

    (Department of Electrical & Electronics Engineering, Faculty of Engineering and Architecture, Nisantasi University, Istanbul 34398, Turkey)

  • Nicu Bizon

    (Faculty of Electronics, Communication and Computers, University of Pitesti, 110040 Pitesti, Romania
    Doctoral School, Polytechnic University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
    ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania)

  • Ilhami Colak

    (Department of Electrical & Electronics Engineering, Faculty of Engineering and Architecture, Nisantasi University, Istanbul 34398, Turkey)

  • Phatiphat Thounthong

    (ICSI Renewable Energy Research Centre (RERC), Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
    Group of Research in Electrical Engineering of Nancy (GREEN), University of Lorraine-GREEN, F-54000 Nancy, France)

  • Noureddine Takorabet

    (Group of Research in Electrical Engineering of Nancy (GREEN), University of Lorraine-GREEN, F-54000 Nancy, France)

Abstract

This work proposes a new indirect filed-oriented control (IFOC) scheme for double-powered induction generators (DPIGs) in multi-rotor wind turbine systems (MRWT S ). The IFOC strategy is characterized by its simplicity, ease of use, and fast dynamic speed. However, there are drawbacks to this method. Among its disadvantages is the presence of ripples in the level of torque, active power, and current. In addition, the total harmonic distortion (THD) value of the electric current is higher compared to the direct torque control method. In order to overcome these shortcomings and in terms of improving the effectiveness and performance of this method, a new algorithm is proposed for the super twisting algorithm (STA). In this work, a new STA method called simplified STA (SSTA) algorithm is proposed and applied to the traditional IFOC strategy in order to reduce the ripples of torque, current, and active power. On the other hand, the inverter of the DPIG is controlled by using a five-level fuzzy simplified space vector modulation (FSSVM) technique to obtain a signal at the inverter output of a fixed frequency. The results obtained from this proposed IFOC-SSTA method with FSSVM strategy are compared with the classical IFOC method which uses the classical controller based on a proportional-integral (PI) controller. The proposed method is achieved using the Matlab/Simulink software, where a generator with a large capacity of 1.5 megawatts is used. The generator is placed in a multi-rotor electric power generation system. On the other hand, the two methods are compared in terms of ripple ratio, dynamic response, durability, and total harmonic distortion (THD) value of the electric current. Through the results obtained from this work, the proposed method based on SSTA provided better results in terms of ripple ratio, response dynamic, and even THD value compared to the classical method, and this shows the robustness of the proposed method in improving the performance and efficiency of the generator in the multi-rotor wind system.

Suggested Citation

  • Habib Benbouhenni & Nicu Bizon & Ilhami Colak & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Simplified Super Twisting Sliding Mode Approaches of the Double-Powered Induction Generator-Based Multi-Rotor Wind Turbine System," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5014-:d:799363
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Mohamed Eltamaly & Mamdooh Al-Saud & Khairy Sayed & Ahmed G. Abo-Khalil, 2020. "Sensorless Active and Reactive Control for DFIG Wind Turbines Using Opposition-Based Learning Technique," Sustainability, MDPI, vol. 12(9), pages 1-14, April.
    2. Gianluca Brando & Adolfo Dannier & Ivan Spina, 2021. "Performance Analysis of a Full Order Sensorless Control Adaptive Observer for Doubly-Fed Induction Generator in Grid Connected Operation," Energies, MDPI, vol. 14(5), pages 1-13, February.
    3. Mohammed Mazen Alhato & Soufiene Bouallègue & Hegazy Rezk, 2020. "Modeling and Performance Improvement of Direct Power Control of Doubly-Fed Induction Generator Based Wind Turbine through Second-Order Sliding Mode Control Approach," Mathematics, MDPI, vol. 8(11), pages 1-31, November.
    4. Habib Benbouhenni & Nicu Bizon, 2021. "A Synergetic Sliding Mode Controller Applied to Direct Field-Oriented Control of Induction Generator-Based Variable Speed Dual-Rotor Wind Turbines," Energies, MDPI, vol. 14(15), pages 1-17, July.
    5. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    6. Yaozhen Han & Ronglin Ma, 2019. "Adaptive-Gain Second-Order Sliding Mode Direct Power Control for Wind-Turbine-Driven DFIG under Balanced and Unbalanced Grid Voltage," Energies, MDPI, vol. 12(20), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Shi & Xiangzheng Xu, 2022. "A Robust Control Scheme for Dynamic Voltage Restorer with Current Limiting Capability," Sustainability, MDPI, vol. 14(24), pages 1-12, December.
    2. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habib Benbouhenni & Zinelaabidine Boudjema & Nicu Bizon & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy," Energies, MDPI, vol. 15(10), pages 1-25, May.
    2. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    3. Ahmed Sobhy & Ahmed G. Abo-Khalil & Dong Lei & Tareq Salameh & Adel Merabet & Malek Alkasrawi, 2022. "Coupling DFIG-Based Wind Turbines with the Grid under Voltage Imbalance Conditions," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    4. Adolfo Dannier & Emanuele Fedele & Ivan Spina & Gianluca Brando, 2022. "Doubly-Fed Induction Generator (DFIG) in Connected or Weak Grids for Turbine-Based Wind Energy Conversion System," Energies, MDPI, vol. 15(17), pages 1-5, September.
    5. Abdulaziz Almutairi & Ahmed G. Abo-Khalil & Khairy Sayed & Naif Albagami, 2020. "MPPT for a PV Grid-Connected System to Improve Efficiency under Partial Shading Conditions," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    6. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    7. Omar Alrumayh & Khairy Sayed & Abdulaziz Almutairi, 2023. "LVRT and Reactive Power/Voltage Support of Utility-Scale PV Power Plants during Disturbance Conditions," Energies, MDPI, vol. 16(7), pages 1-20, April.
    8. Ramesh Kumar Behara & Akshay Kumar Saha, 2022. "Artificial Intelligence Control System Applied in Smart Grid Integrated Doubly Fed Induction Generator-Based Wind Turbine: A Review," Energies, MDPI, vol. 15(17), pages 1-56, September.
    9. Mohamed Abdelrahem & Christoph Hackl & Ralph Kennel & Jose Rodriguez, 2021. "Low Sensitivity Predictive Control for Doubly-Fed Induction Generators Based Wind Turbine Applications," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    10. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    11. Ahmed G. Abo-Khalil & Ali M. Eltamaly & Praveen R.P. & Ali S. Alghamdi & Iskander Tlili, 2020. "A Sensorless Wind Speed and Rotor Position Control of PMSG in Wind Power Generation Systems," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    12. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    13. Mansoor Soomro & Zubair Ahmed Memon & Mazhar Hussain Baloch & Nayyar Hussain Mirjat & Laveet Kumar & Quynh T. Tran & Gaetano Zizzo, 2023. "Performance Improvement of Grid-Integrated Doubly Fed Induction Generator under Asymmetrical and Symmetrical Faults," Energies, MDPI, vol. 16(8), pages 1-20, April.
    14. Yashar Mousavi & Geraint Bevan & Ibrahim Beklan Küçükdemiral & Afef Fekih, 2021. "Maximum Power Extraction from Wind Turbines Using a Fault-Tolerant Fractional-Order Nonsingular Terminal Sliding Mode Controller," Energies, MDPI, vol. 14(18), pages 1-16, September.
    15. Surender Reddy Salkuti, 2022. "Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid," Energies, MDPI, vol. 15(18), pages 1-7, September.
    16. Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.
    17. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    18. Syed Wajahat Ali & Anant Kumar Verma & Yacine Terriche & Muhammad Sadiq & Chun-Lien Su & Chung-Hong Lee & Mahmoud Elsisi, 2022. "Finite-Control-Set Model Predictive Control for Low-Voltage-Ride-Through Enhancement of PMSG Based Wind Energy Grid Connection Systems," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    19. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    20. Mohammad Hosein Sabzalian & Khalid A. Alattas & Fayez F. M. El-Sousy & Ardashir Mohammadzadeh & Saleh Mobayen & Mai The Vu & Mauricio Aredes, 2022. "A Neural Controller for Induction Motors: Fractional-Order Stability Analysis and Online Learning Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5014-:d:799363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.