IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p315-d476869.html
   My bibliography  Save this article

Electric Mobility in a Smart City: European Overview

Author

Listed:
  • Roberto Ruggieri

    (Department of Management, Sapienza, University of Rome, Via del Castro Laurenziano 9, 00161 Rome, Italy)

  • Marco Ruggeri

    (Department of Management, Sapienza, University of Rome, Via del Castro Laurenziano 9, 00161 Rome, Italy)

  • Giuliana Vinci

    (Department of Management, Sapienza, University of Rome, Via del Castro Laurenziano 9, 00161 Rome, Italy)

  • Stefano Poponi

    (Faculty of Economics, Nicolò Cusano University (Unicusano), Via Don Carlo Gnocchi 3, 00166 Rome, Italy)

Abstract

According to the United Nations (UN), although cities occupy only 3% of Earth’s surface, they host more than half of the global population, are responsible for 70% of energy consumption, and 75% of carbon emissions. All this is a consequence of the massive urbanization verified since the 1950s and which is expected to continue in the coming decades. A crucial issue will therefore concern the management of existing cities and the planning of future ones, and this was also emphasized by the UN Sustainable Development Goals (SDGs), especially in Goal 11 (Sustainable Cities and communities). Smart Cities are often seen as ideal urban environments in which the different dimensions of a city (economy, education, energy, environment, etc.) are managed successfully and proactively. So, one of the most important challenges cities will have to face, is to guide citizens towards a form of “clean” energy consumption, and the dimension on which decision-makers will be able to work is the decarbonization of transport. To achieve this, electric mobility could help reduce polluting emissions on the road. Within this research, the strategies that six Smart Cities (London, Hamburg, Oslo, Milan, Florence, and Bologna) have implemented to encourage the transition to this form of mobility have been studied. Through a systematic review of the literature (Scopus, Google Scholar, and Web of Science) and through the study of the main political/energy documents of the cities, their policies on electric mobility have been evaluated. Then, for each city, SDG 11.6.2 was analyzed to assess the air quality in the last four years (2016–2019) and, therefore, the effectiveness of the policies. The analysis showed, in general, that the policies have worked, inducing reductions in the pollutants of PM 2.5 , PM 10 , NO 2 . In particular, the cities showed the most significant reduction in pollutant (above 20%) were Hamburg (−28% PM 2.5 and −2%6 NO 2 ), Milan (−25% PM 2.5 and −52% NO 2 ), and London (−26% NO 2 ).

Suggested Citation

  • Roberto Ruggieri & Marco Ruggeri & Giuliana Vinci & Stefano Poponi, 2021. "Electric Mobility in a Smart City: European Overview," Energies, MDPI, vol. 14(2), pages 1-29, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:315-:d:476869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Xiaoyang & Zhang, Bin & Wang, Bo & Wang, Zhaohua, 2020. "Urban households’ purchase intentions for pure electric vehicles under subsidy contexts in China: Do cost factors matter?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 183-197.
    2. Karishma Asarpota & Vincent Nadin, 2020. "Energy Strategies, the Urban Dimension, and Spatial Planning," Energies, MDPI, vol. 13(14), pages 1-25, July.
    3. Nadine Gatzert & Katrin Osterrieder, 2020. "The future of mobility and its impact on the automobile insurance industry," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 23(1), pages 31-51, March.
    4. Florian van Triel & Timothy E. Lipman, 2020. "Modeling the Future California Electricity Grid and Renewable Energy Integration with Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-20, October.
    5. Alexandre Beaudet & François Larouche & Kamyab Amouzegar & Patrick Bouchard & Karim Zaghib, 2020. "Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
    6. Danielis, Romeo & Rotaris, Lucia & Giansoldati, Marco & Scorrano, Mariangela, 2020. "Drivers’ preferences for electric cars in Italy. Evidence from a country with limited but growing electric car uptake," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 79-94.
    7. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
    8. Colbertaldo, P. & Cerniauskas, S. & Grube, T. & Robinius, M. & Stolten, D. & Campanari, S., 2020. "Clean mobility infrastructure and sector integration in long-term energy scenarios: The case of Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Michel Zade & Zhengjie You & Babu Kumaran Nalini & Peter Tzscheutschler & Ulrich Wagner, 2020. "Quantifying the Flexibility of Electric Vehicles in Germany and California—A Case Study," Energies, MDPI, vol. 13(21), pages 1-21, October.
    10. Green, Colin P. & Heywood, John S. & Navarro Paniagua, Maria, 2020. "Did the London congestion charge reduce pollution?," Regional Science and Urban Economics, Elsevier, vol. 84(C).
    11. Ferrero, Enrico & Alessandrini, Stefano & Balanzino, Alessia, 2016. "Impact of the electric vehicles on the air pollution from a highway," Applied Energy, Elsevier, vol. 169(C), pages 450-459.
    12. Masiero, Gilmar & Ogasavara, Mario Henrique & Jussani, Ailton Conde & Risso, Marcelo Luiz, 2017. "The global value chain of electric vehicles: A review of the Japanese, South Korean and Brazilian cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 290-296.
    13. Contreras, Gabriela & Platania, Federico, 2019. "Economic and policy uncertainty in climate change mitigation: The London Smart City case scenario," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 384-393.
    14. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    15. Boggio, Margherita & Beria, Paolo, 2019. "The role of transport supply in the acceptability of pollution charge extension. The case of Milan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 92-106.
    16. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    17. Konstantinos Koasidis & Anastasios Karamaneas & Alexandros Nikas & Hera Neofytou & Erlend A. T. Hermansen & Kathleen Vaillancourt & Haris Doukas, 2020. "Many Miles to Paris: A Sectoral Innovation System Analysis of the Transport Sector in Norway and Canada in Light of the Paris Agreement," Sustainability, MDPI, vol. 12(14), pages 1-37, July.
    18. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2020. "Mandating the use of the electric taxis: The case of Florence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 402-414.
    19. Katharina Lange & Jörg Knieling, 2020. "EU Smart City Lighthouse Projects between Top-Down Strategies and Local Legitimation: The Case of Hamburg," Urban Planning, Cogitatio Press, vol. 5(1), pages 107-115.
    20. Wager, Guido & Whale, Jonathan & Braunl, Thomas, 2016. "Driving electric vehicles at highway speeds: The effect of higher driving speeds on energy consumption and driving range for electric vehicles in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 158-165.
    21. Lieven, Theo, 2015. "Policy measures to promote electric mobility – A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 78-93.
    22. Batista, T. & Freire, F. & Silva, C.M., 2015. "Vehicle environmental rating methodologies: Overview and application to light-duty vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 192-206.
    23. Tomáš Formánek & Radek Tahal, 2020. "Socio-Demographic Aspects Affecting Individual Stances towards Electric and Hybrid Vehicles in the Czech Republic," Central European Business Review, Prague University of Economics and Business, vol. 2020(2), pages 78-93.
    24. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    25. Nur, Bakheit Mohammed, 2020. "A case study of socio-cultural and technical factors in automobile design: Discourses between designers and potential users on a new electric vehicle in Africa," Technology in Society, Elsevier, vol. 63(C).
    26. Edoardo Croci & Aldo Ravazzi Douvan, 2016. "Urban Road Pricing: A Comparative Study on the Experiences of London, Stockholm and Milan," IEFE Working Papers 85, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    27. Sandra Krommes & Felix Schmidt, 2017. "Business model analysis of electric mobility products and services," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 17(3), pages 316-338.
    28. Morton, Craig & Lovelace, Robin & Anable, Jillian, 2017. "Exploring the effect of local transport policies on the adoption of low emission vehicles: Evidence from the London Congestion Charge and Hybrid Electric Vehicles," Transport Policy, Elsevier, vol. 60(C), pages 34-46.
    29. José-Luis Alfaro-Navarro & Víctor-Raúl López-Ruiz & Domingo Nevado Peña, 2017. "A New Sustainability City Index Based on Intellectual Capital Approach," Sustainability, MDPI, vol. 9(5), pages 1-13, May.
    30. Abdulla Al Wahedi & Yusuf Bicer, 2020. "A Case Study in Qatar for Optimal Energy Management of an Autonomous Electric Vehicle Fast Charging Station with Multiple Renewable Energy and Storage Systems," Energies, MDPI, vol. 13(19), pages 1-26, September.
    31. Moayad Shammut & Mengqiu Cao & Yuerong Zhang & Claire Papaix & Yuqi Liu & Xing Gao, 2019. "Banning Diesel Vehicles in London: Is 2040 Too Late?," Energies, MDPI, vol. 12(18), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elnaz Ghorbani & Tristan Fluechter & Laura Calvet & Majsa Ammouriova & Javier Panadero & Angel A. Juan, 2023. "Optimizing Energy Consumption in Smart Cities’ Mobility: Electric Vehicles, Algorithms, and Collaborative Economy," Energies, MDPI, vol. 16(3), pages 1-19, January.
    2. Manuel Rey-Moreno & Rafael Periáñez-Cristóbal & Arturo Calvo-Mora, 2022. "Reflections on Sustainable Urban Mobility, Mobility as a Service (MaaS) and Adoption Models," IJERPH, MDPI, vol. 20(1), pages 1-14, December.
    3. Oleg Dashkevych & Boris A. Portnov, 2022. "Criteria for Smart City Identification: A Systematic Literature Review," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    4. Anna Kowalska-Pyzalska & Marek Kott & Joanna Kott, 2021. "How Much Polish Consumers Know about Alternative Fuel Vehicles? Impact of Knowledge on the Willingness to Buy," Energies, MDPI, vol. 14(5), pages 1-19, March.
    5. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    6. Piotr Rosik & Sławomir Goliszek & Tomasz Komornicki & Patryk Duma, 2021. "Forecast of the Impact of Electric Car Battery Performance and Infrastructural and Demographic Changes on Cumulative Accessibility for the Five Most Populous Cities in Poland," Energies, MDPI, vol. 14(24), pages 1-12, December.
    7. Nan Jia & Yinshuai Li & Ruishan Chen & Hongbo Yang, 2023. "A Review of Global PM 2.5 Exposure Research Trends from 1992 to 2022," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    8. Leandro do C. Martins & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan & Javier Faulin, 2021. "Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation," Energies, MDPI, vol. 14(16), pages 1-30, August.
    9. Marta Borowska-Stefańska & Michał Kowalski & Paulina Kurzyk & Miroslava Mikušová & Szymon Wiśniewski, 2021. "Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland," Energies, MDPI, vol. 14(13), pages 1-24, June.
    10. Katarzyna Kubiak-Wójcicka & Filip Polak & Leszek Szczęch, 2022. "Water Power Plants Possibilities in Powering Electric Cars—Case Study: Poland," Energies, MDPI, vol. 15(4), pages 1-17, February.
    11. Armin Razmjoo & Meysam Majidi Nezhad & Lisa Gakenia Kaigutha & Mousa Marzband & Seyedali Mirjalili & Mehdi Pazhoohesh & Saim Memon & Mehdi A. Ehyaei & Giuseppe Piras, 2021. "Investigating Smart City Development Based on Green Buildings, Electrical Vehicles and Feasible Indicators," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    12. Romano Alberto Acri & Silvia Barone & Paolo Cambula & Valter Cecchini & Maria Carmen Falvo & Jacopo Lepore & Matteo Manganelli & Federico Santi, 2021. "Forecast of the Demand for Electric Mobility for Rome–Fiumicino International Airport," Energies, MDPI, vol. 14(17), pages 1-19, August.
    13. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
    14. Long Qian & Xiaolin Xu & Yunjie Zhou & Ying Sun & Duoliang Ma, 2023. "Carbon Emission Reduction Effects of the Smart City Pilot Policy in China," Sustainability, MDPI, vol. 15(6), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. František Pollák & Josef Vodák & Jakub Soviar & Peter Markovič & Gianluca Lentini & Valerio Mazzeschi & Alessandro Luè, 2021. "Promotion of Electric Mobility in the European Union—Overview of Project PROMETEUS from the Perspective of Cohesion through Synergistic Cooperation on the Example of the Catching-Up Region," Sustainability, MDPI, vol. 13(3), pages 1-26, February.
    2. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    3. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    4. Kamile Petrauskiene & Jolanta Dvarioniene & Giedrius Kaveckis & Daina Kliaugaite & Julie Chenadec & Leonie Hehn & Berta Pérez & Claudio Bordi & Giorgio Scavino & Andrea Vignoli & Michael Erman, 2020. "Situation Analysis of Policies for Electric Mobility Development: Experience from Five European Regions," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    5. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.
    6. Kowalska-Pyzalska, Anna & Kott, Joanna & Kott, Marek, 2020. "Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    8. Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    9. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    10. Jose Esteves & Daniel Alonso-Martínez & Guillermo de Haro, 2021. "Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    11. Sun, Ka Kit & He, Sylvia Y. & Thøgersen, John, 2022. "The purchase intention of electric vehicles in Hong Kong, a high-density Asian context, and main differences from a Nordic context," Transport Policy, Elsevier, vol. 128(C), pages 98-112.
    12. Debnath, Ramit & Bardhan, Ronita & Reiner, David M. & Miller, J.R., 2021. "Political, economic, social, technological, legal and environmental dimensions of electric vehicle adoption in the United States: A social-media interaction analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Walter Leal Filho & Ismaila Rimi Abubakar & Richard Kotter & Thomas Skou Grindsted & Abdul-Lateef Balogun & Amanda Lange Salvia & Yusuf A. Aina & Franziska Wolf, 2021. "Framing Electric Mobility for Urban Sustainability in a Circular Economy Context: An Overview of the Literature," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    14. Huang, Youlin & Qian, Lixian & Tyfield, David & Soopramanien, Didier, 2021. "On the heterogeneity in consumer preferences for electric vehicles across generations and cities in China," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    15. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    16. Wilfredo F. Yushimito & Sebastian Moreno & Daniela Miranda, 2023. "The Potential of Battery Electric Taxis in Santiago de Chile," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    17. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    18. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    19. Trotta, Gianluca & Sommer, Stephan, 2024. "The effect of changing registration taxes on electric vehicle adoption in Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    20. Berkeley, Nigel & Bailey, David & Jones, Andrew & Jarvis, David, 2017. "Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 320-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:315-:d:476869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.