IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5837-d387049.html
   My bibliography  Save this article

Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials

Author

Listed:
  • Alexandre Beaudet

    (InnovÉÉ, Montreal, QC H3B 2E3, Canada)

  • François Larouche

    (Center of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, Varennes, QC J3X 1S1, Canada
    Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada)

  • Kamyab Amouzegar

    (Center of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, Varennes, QC J3X 1S1, Canada)

  • Patrick Bouchard

    (Center of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, Varennes, QC J3X 1S1, Canada)

  • Karim Zaghib

    (Center of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, Varennes, QC J3X 1S1, Canada)

Abstract

The development and deployment of cost-effective and energy-efficient solutions for recycling end-of-life electric vehicle batteries is becoming increasingly urgent. Based on the existing literature, as well as original data from research and ongoing pilot projects in Canada, this paper discusses the following: (i) key economic and environmental drivers for recycling electric vehicle (EV) batteries; (ii) technical and financial challenges to large-scale deployment of recycling initiatives; and (iii) the main recycling process options currently under consideration. A number of policies and strategies are suggested to overcome these challenges, such as increasing the funding for both incremental innovation and breakthroughs on recycling technology, funding for pilot projects (particularly those contributing to fostering collaboration along the entire recycling value chain), and market-pull measures to support the creation of a favorable economic and regulatory environment for large-scale EV battery recycling.

Suggested Citation

  • Alexandre Beaudet & François Larouche & Kamyab Amouzegar & Patrick Bouchard & Karim Zaghib, 2020. "Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5837-:d:387049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5837/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anni Orola & Anna Härri & Jarkko Levänen & Ville Uusitalo & Stig Irving Olsen, 2022. "Assessing WELBY Social Life Cycle Assessment Approach through Cobalt Mining Case Study," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    2. Debnath, Ramit & Bardhan, Ronita & Reiner, David M. & Miller, J.R., 2021. "Political, economic, social, technological, legal and environmental dimensions of electric vehicle adoption in the United States: A social-media interaction analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Schuster, Viktoria & Ciacci, Luca & Passarini, Fabrizio, 2023. "Mining the in-use stock of energy-transition materials for closed-loop e-mobility," Resources Policy, Elsevier, vol. 86(PB).
    4. Shen, Liyin & Chen, Ziwei & Dou, Xin & Xu, Xiangrui & Cao, Zeyu & Liao, Shiju, 2024. "Restricting factors for promoting electric vehicles: Evidence from China," Transport Policy, Elsevier, vol. 148(C), pages 234-245.
    5. Xichen Lyu & Yingying Xu & Dian Sun, 2021. "An Evolutionary Game Research on Cooperation Mode of the NEV Power Battery Recycling and Gradient Utilization Alliance in the Context of China’s NEV Power Battery Retired Tide," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    6. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    7. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels," Energies, MDPI, vol. 14(5), pages 1-33, March.
    8. Konstantina Anastasiadou, 2021. "Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology," Sustainability, MDPI, vol. 13(9), pages 1-27, April.
    9. Yana Buravleva & Decai Tang & Brandon J. Bethel, 2021. "Incentivizing Innovation: The Causal Role of Government Subsidies on Lithium-Ion Battery Research and Development," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    10. Vongdala Noudeng & Nguyen Van Quan & Tran Dang Xuan, 2022. "A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    11. A’aeshah Alhakamy & Areej Alhowaity & Anwar Abdullah Alatawi & Hadeel Alsaadi, 2023. "Are Used Cars More Sustainable? Price Prediction Based on Linear Regression," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    12. Aiman Albatayneh & Adel Juaidi & Mustafa Jaradat & Francisco Manzano-Agugliaro, 2023. "Future of Electric and Hydrogen Cars and Trucks: An Overview," Energies, MDPI, vol. 16(7), pages 1-16, April.
    13. Nandan Gopinathan & Prabhakar Karthikeyan Shanmugam, 2022. "Energy Anxiety in Decentralized Electricity Markets: A Critical Review on EV Models," Energies, MDPI, vol. 15(14), pages 1-40, July.
    14. Kelsea A. Schumacher & Martin L. Green, 2023. "Circular Economy in a High-Tech World," Circular Economy and Sustainability, Springer, vol. 3(2), pages 619-642, June.
    15. Roberto Ruggieri & Marco Ruggeri & Giuliana Vinci & Stefano Poponi, 2021. "Electric Mobility in a Smart City: European Overview," Energies, MDPI, vol. 14(2), pages 1-29, January.
    16. Charles Lincoln Kenji Yamamura & Harmi Takiya & Cláudia Aparecida Soares Machado & José Carlos Curvelo Santana & José Alberto Quintanilha & Fernando Tobal Berssaneti, 2022. "Electric Cars in Brazil: An Analysis of Core Green Technologies and the Transition Process," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    17. Uzair Khan & Mohd Tariq & Arif I. Sarwat, 2024. "Adaptive Remaining Capacity Estimator of Lithium-Ion Battery Using Genetic Algorithm-Tuned Random Forest Regressor Under Dynamic Thermal and Operational Environments," Energies, MDPI, vol. 17(22), pages 1-18, November.
    18. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
    19. Chein-Chung Sun & Chun-Hung Chou & Yu-Liang Lin & Yu-Hua Huang, 2022. "A Cost-Effective Passive/Active Hybrid Equalizer Circuit Design," Energies, MDPI, vol. 15(6), pages 1-20, March.
    20. Aleksandr Sh. Samarin & Alexey V. Ivanov & Stanislav S. Fedotov, 2023. "Toward Efficient Recycling of Vanadium Phosphate-Based Sodium-Ion Batteries: A Review," Clean Technol., MDPI, vol. 5(3), pages 1-20, July.
    21. Hao Hao & Wenxian Xu & Fangfang Wei & Chuanliang Wu & Zhaoran Xu, 2022. "Reward–Penalty vs. Deposit–Refund: Government Incentive Mechanisms for EV Battery Recycling," Energies, MDPI, vol. 15(19), pages 1-18, September.
    22. Dessy Amalia & Pritam Singh & Wensheng Zhang & Aleksandar N. Nikoloski, 2023. "The Effect of a Molasses Reductant on Acetic Acid Leaching of Black Mass from Mechanically Treated Spent Lithium-Ion Cylindrical Batteries," Sustainability, MDPI, vol. 15(17), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5837-:d:387049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.