IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7708-d681464.html
   My bibliography  Save this article

A Rapid Compression Machine Study of 2-Phenylethanol Autoignition at Low-To-Intermediate Temperatures

Author

Listed:
  • Ruozhou Fang

    (Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA)

  • Chih-Jen Sung

    (Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA)

Abstract

To meet the increasing anti-knocking quality demand of boosted spark-ignition engines, fuel additives are considered an effective approach to tailor fuel properties for satisfying the performance requirements. Thus, screening/developing bio-derived fuel additives that are best-suited for advanced spark-ignition engines has become a significant task. 2-Phenylethanol (2-PE) is an attractive candidate that features high research octane number, high octane sensitivity, low vapor pressure, and high energy density. Recognizing that the low temperature autoignition chemistry of 2-PE is not well understood and the need for fundamental experimental data at engine-relevant conditions, rapid compression machine (RCM) experiments are therefore conducted herein to measure ignition delay times (IDTs) of 2-PE in air over a wide range of conditions to fill this fundamental void. These newly acquired IDT data at low-to-intermediated temperatures, equivalence ratios of 0.35–1.5, and compressed pressures of 10–40 bar are then used to validate the 2-PE model developed by Shankar et al. (2017). It is found that this literature model greatly overpredicts the current RCM data. The comparison of experimental and simulated results also provides insights into 2-PE autoignition behaviors at varying conditions. Further chemical kinetic analyses demonstrate that the absence of the O 2 -addition pathway of β- R . radical in the 2-PE model of Shankar et al. (2017) could account for the model discrepancies observed at low-to-intermediated temperatures.

Suggested Citation

  • Ruozhou Fang & Chih-Jen Sung, 2021. "A Rapid Compression Machine Study of 2-Phenylethanol Autoignition at Low-To-Intermediate Temperatures," Energies, MDPI, vol. 14(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7708-:d:681464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shota Atsumi & Taizo Hanai & James C. Liao, 2008. "Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels," Nature, Nature, vol. 451(7174), pages 86-89, January.
    2. Pan, Mingzhang & Wei, Haiqiao & Feng, Dengquan & Pan, Jiaying & Huang, Rong & Liao, Jinyang, 2018. "Experimental study on combustion characteristics and emission performance of 2-phenylethanol addition in a downsized gasoline engine," Energy, Elsevier, vol. 163(C), pages 894-904.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Chang, Shaoyue & Wu, Wei & Dong, Lihui & Chen, Zhaohui & Chen, Guisheng, 2019. "A diesel/natural gas dual fuel mechanism constructed to reveal combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 59-75.
    2. Nestor Sanchez & Ruth Yolanda Ruiz & Nicolas Infante & Martha Cobo, 2017. "Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation," Energies, MDPI, vol. 10(12), pages 1-16, December.
    3. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    4. Fatigati, Fabio & Di Battista, Davide & Cipollone, Roberto, 2021. "Design improvement of volumetric pump for engine cooling in the transportation sector," Energy, Elsevier, vol. 231(C).
    5. Kumar, Gopal Ramesh & Chowdhary, Nupoor, 2016. "Biotechnological and bioinformatics approaches for augmentation of biohydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1194-1206.
    6. Waleed Iqbal & Muhammad Zahir Afridi & Aftab Jamal & Adil Mihoub & Muhammad Farhan Saeed & Árpád Székely & Adil Zia & Muhammad Awais Khan & Alfredo Jarma-Orozco & Marcelo F. Pompelli, 2022. "Canola Seed Priming and Its Effect on Gas Exchange, Chlorophyll Photobleaching, and Enzymatic Activities in Response to Salt Stress," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    7. Mack, J. Hunter & Schuler, Daniel & Butt, Ryan H. & Dibble, Robert W., 2016. "Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 165(C), pages 612-626.
    8. Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.
    9. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    10. Chengzhang Fu & Yunkun Liu & Christine Walt & Sari Rasheed & Chantal D. Bader & Peer Lukat & Markus Neuber & F. P. Jake Haeckl & Wulf Blankenfeldt & Olga V. Kalinina & Rolf Müller, 2024. "Elucidation of unusual biosynthesis and DnaN-targeting mode of action of potent anti-tuberculosis antibiotics Mycoplanecins," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Shihui Yang & Wei Wang & Hui Wei & Stefanie Van Wychen & Philip T. Pienkos & Min Zhang & Michael E. Himmel, 2016. "Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species," Energies, MDPI, vol. 9(9), pages 1-12, August.
    12. Campos-Fernández, Javier & Arnal, Juan M. & Gómez, Jose & Dorado, M. Pilar, 2012. "A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 267-275.
    13. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    14. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    15. Bo Jiang & Pengfei Wang & Yaoyao Ying & Minye Luo & Dong Liu, 2018. "Nanoscale Characteristics and Reactivity of Nascent Soot from n -Heptane/2,5-Dimethylfuran Inverse Diffusion Flames with/without Magnetic Fields," Energies, MDPI, vol. 11(7), pages 1-21, July.
    16. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
    17. Zhong, Wenjun & Huang, Xinghan & Guo, Heng & Mahmoud, Nasreldin M. & Yan, Feibin & He, Zhixia & Wang, Qian & Wang, Jing, 2023. "Spray-evaporation characteristics of n-pentanol/n-dodecane binary fuel at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 219(P2).
    18. Hejna, Aleksander & Kosmela, Paulina & Formela, Krzysztof & Piszczyk, Łukasz & Haponiuk, Józef T., 2016. "Potential applications of crude glycerol in polymer technology–Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 449-475.
    19. Su, HaiFeng & Lin, JiaFu & Tan, FuRong, 2017. "Progress and perspective of biosynthetic platform for higher-order biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 801-826.
    20. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7708-:d:681464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.