IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6011-d640314.html
   My bibliography  Save this article

Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review

Author

Listed:
  • Ulugbek Azimov

    (Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK)

  • Victor Okoro

    (Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK)

  • Hector H. Hernandez

    (Department of Biomedical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates)

Abstract

This review covers the recent progress in the design and application of microbial biofuels, assessing the advancement of genetic engineering undertakings and their marketability, and lignocellulosic biomass pretreatment issues. Municipal solid waste (MSW) is a promising sustainable biofuel feedstock due to its high content of lignocellulosic fiber. In this review, we compared the production of fatty alcohols, alkanes, and n-butanol from residual biogenic waste and the environmental/economic parameters to that of conventional biofuels. New synthetic biology tools can be used to engineer fermentation pathways within micro-organisms to produce long-chain alcohols, isoprenoids, long-chain fatty acids, and esters, along with alkanes, as substitutes to petroleum-derived fuels. Biotechnological advances have struggled to address problems with bioethanol, such as lower energy density compared to gasoline and high corrosive and hygroscopic qualities that restrict its application in present infrastructure. Biofuels derived from the organic fraction of municipal solid waste (OFMSW) may have less environmental impacts compared to traditional fuel production, with the added benefit of lower production costs. Unfortunately, current advanced biofuel production suffers low production rates, which hinders commercial scaling-up efforts. Microbial-produced biofuels can address low productivity while increasing the spectrum of produced bioenergy molecules.

Suggested Citation

  • Ulugbek Azimov & Victor Okoro & Hector H. Hernandez, 2021. "Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6011-:d:640314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shota Atsumi & Taizo Hanai & James C. Liao, 2008. "Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels," Nature, Nature, vol. 451(7174), pages 86-89, January.
    2. Li, Yangyang & Jin, Yiying, 2015. "Effects of thermal pretreatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste," Renewable Energy, Elsevier, vol. 77(C), pages 550-557.
    3. Pamela P. Peralta-Yahya & Fuzhong Zhang & Stephen B. del Cardayre & Jay D. Keasling, 2012. "Microbial engineering for the production of advanced biofuels," Nature, Nature, vol. 488(7411), pages 320-328, August.
    4. Pamela P. Peralta-Yahya & Mario Ouellet & Rossana Chan & Aindrila Mukhopadhyay & Jay D. Keasling & Taek Soon Lee, 2011. "Identification and microbial production of a terpene-based advanced biofuel," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    5. Clementina Dellomonaco & James M. Clomburg & Elliot N. Miller & Ramon Gonzalez, 2011. "Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals," Nature, Nature, vol. 476(7360), pages 355-359, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lisandra Rocha-Meneses & Mario Luna-delRisco & Carlos Arrieta González & Sebastián Villegas Moncada & Andrés Moreno & Jorge Sierra-Del Rio & Luis E. Castillo-Meza, 2023. "An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia," Energies, MDPI, vol. 16(16), pages 1-20, August.
    2. Alejandro Ortega & Konstantinos Gkoumas & Anastasios Tsakalidis & Ferenc Pekár, 2021. "Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation," Energies, MDPI, vol. 14(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scaife, Mark A. & Merkx-Jacques, Alexandra & Woodhall, David L. & Armenta, Roberto E., 2015. "Algal biofuels in Canada: Status and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 620-642.
    2. Das, Manali & Patra, Pradipta & Ghosh, Amit, 2020. "Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Shihui Yang & Wei Wang & Hui Wei & Stefanie Van Wychen & Philip T. Pienkos & Min Zhang & Michael E. Himmel, 2016. "Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species," Energies, MDPI, vol. 9(9), pages 1-12, August.
    4. Su, HaiFeng & Lin, JiaFu & Tan, FuRong, 2017. "Progress and perspective of biosynthetic platform for higher-order biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 801-826.
    5. Xinyue Mu & Trent D. Evans & Fuzhong Zhang, 2024. "ATP biosensor reveals microbial energetic dynamics and facilitates bioproduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Chen, Hong-Ge & Zhang, Y.-H. Percival, 2015. "New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 117-132.
    7. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    8. Aisha Al-Rumaihi & Gordon McKay & Hamish R. Mackey & Tareq Al-Ansari, 2020. "Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    9. Fernand, Francois & Israel, Alvaro & Skjermo, Jorunn & Wichard, Thomas & Timmermans, Klaas R. & Golberg, Alexander, 2017. "Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 35-45.
    10. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    11. Nestor Sanchez & Ruth Yolanda Ruiz & Nicolas Infante & Martha Cobo, 2017. "Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation," Energies, MDPI, vol. 10(12), pages 1-16, December.
    12. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    13. Liu, Zihe & Moradi, Hamideh & Shi, Shuobo & Darvishi, Farshad, 2021. "Yeasts as microbial cell factories for sustainable production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Kumar, Gopal Ramesh & Chowdhary, Nupoor, 2016. "Biotechnological and bioinformatics approaches for augmentation of biohydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1194-1206.
    15. Waleed Iqbal & Muhammad Zahir Afridi & Aftab Jamal & Adil Mihoub & Muhammad Farhan Saeed & Árpád Székely & Adil Zia & Muhammad Awais Khan & Alfredo Jarma-Orozco & Marcelo F. Pompelli, 2022. "Canola Seed Priming and Its Effect on Gas Exchange, Chlorophyll Photobleaching, and Enzymatic Activities in Response to Salt Stress," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    16. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    17. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Mack, J. Hunter & Schuler, Daniel & Butt, Ryan H. & Dibble, Robert W., 2016. "Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 165(C), pages 612-626.
    19. Qiang Yan & William T. Cordell & Michael A. Jindra & Dylan K. Courtney & Madeline K. Kuckuk & Xuanqi Chen & Brian F. Pfleger, 2022. "Metabolic engineering strategies to produce medium-chain oleochemicals via acyl-ACP:CoA transacylase activity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Acheampong, Michael & Ertem, Funda Cansu & Kappler, Benjamin & Neubauer, Peter, 2017. "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 927-937.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6011-:d:640314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.