IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v60y2016icp1-10.html
   My bibliography  Save this article

Recent advances and challenges of the use of cyanobacteria towards the production of biofuels

Author

Listed:
  • Singh, Vijai
  • Chaudhary, Dharmendra Kumar
  • Mani, Indra
  • Dhar, Pawan Kumar

Abstract

Higher oil prices and the necessity for long-term energy security have increased the public and scientific attention on the production of biofuels. Bioenergy is much cleaner, safer, and more economical source of energy than fossil-based fuels. Of several organisms, cyanobacteria are attractive source of biofuels because of their genetic tractability, photosynthetic capability and lack of dependency on fertile land. Synthetic biology and metabolic engineering approaches have been successfully used towards the production of biofuels including ethanol, butanol, biodiesel and hydrogen. This review highlights the recent advances of pathway engineering and uses of synthetic biology tools in cyanobacteria for the production of economical and ecologically biofuels.

Suggested Citation

  • Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
  • Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:1-10
    DOI: 10.1016/j.rser.2016.01.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116001295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.01.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shota Atsumi & Taizo Hanai & James C. Liao, 2008. "Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels," Nature, Nature, vol. 451(7174), pages 86-89, January.
    2. Tae Seok Moon & Chunbo Lou & Alvin Tamsir & Brynne C. Stanton & Christopher A. Voigt, 2012. "Genetic programs constructed from layered logic gates in single cells," Nature, Nature, vol. 491(7423), pages 249-253, November.
    3. Alvin Tamsir & Jeffrey J. Tabor & Christopher A. Voigt, 2011. "Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’," Nature, Nature, vol. 469(7329), pages 212-215, January.
    4. Tal Danino & Octavio Mondragón-Palomino & Lev Tsimring & Jeff Hasty, 2010. "A synchronized quorum of genetic clocks," Nature, Nature, vol. 463(7279), pages 326-330, January.
    5. Wade Winkler & Ali Nahvi & Ronald R. Breaker, 2002. "Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression," Nature, Nature, vol. 419(6910), pages 952-956, October.
    6. Jesse Stricker & Scott Cookson & Matthew R. Bennett & William H. Mather & Lev S. Tsimring & Jeff Hasty, 2008. "A fast, robust and tunable synthetic gene oscillator," Nature, Nature, vol. 456(7221), pages 516-519, November.
    7. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    8. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    2. Fasahati, Peyman & Wu, Wenzhao & Maravelias, Christos T., 2019. "Process synthesis and economic analysis of cyanobacteria biorefineries: A superstructure-based approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samanthe M Lyons & Wenlong Xu & June Medford & Ashok Prasad, 2014. "Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-16, March.
    2. Javier Macia & Romilde Manzoni & Núria Conde & Arturo Urrios & Eulàlia de Nadal & Ricard Solé & Francesc Posas, 2016. "Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-24, February.
    3. Luna Rizik & Loai Danial & Mouna Habib & Ron Weiss & Ramez Daniel, 2022. "Synthetic neuromorphic computing in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    5. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    6. Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
    7. Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.
    8. Alex J. H. Fedorec & Neythen J. Treloar & Ke Yan Wen & Linda Dekker & Qing Hsuan Ong & Gabija Jurkeviciute & Enbo Lyu & Jack W. Rutter & Kathleen J. Y. Zhang & Luca Rosa & Alexey Zaikin & Chris P. Bar, 2024. "Emergent digital bio-computation through spatial diffusion and engineered bacteria," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    10. Lucia Marucci & David A W Barton & Irene Cantone & Maria Aurelia Ricci & Maria Pia Cosma & Stefania Santini & Diego di Bernardo & Mario di Bernardo, 2009. "How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    11. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    12. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    13. Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
    14. Chen Jia & Ramon Grima, 2024. "Holimap: an accurate and efficient method for solving stochastic gene network dynamics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    16. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    17. Luis Mier-y-Terán-Romero & Mary Silber & Vassily Hatzimanikatis, 2010. "The Origins of Time-Delay in Template Biopolymerization Processes," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-15, April.
    18. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Mario A Marchisio & Jörg Stelling, 2011. "Automatic Design of Digital Synthetic Gene Circuits," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.