IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp1124-1130.html
   My bibliography  Save this article

Isobutanol production from empty fruit bunches

Author

Listed:
  • Yang, Jungwoo
  • Kim, Jae Kyun
  • Ahn, Jung-Oh
  • Song, Young-Ha
  • Shin, Chul-Soo
  • Park, Yong-Cheol
  • Kim, Kyoung Heon

Abstract

Although isobutanol has been successfully produced from glucose-based media by various microbes, only a few studies have reported isobutanol production from lignocellulosic biomass. In this study, the feasibility of producing isobutanol from hydrothermally-pretreated empty fruit bunches (EFBs) was analyzed. Firstly, the Escherichia coli JK209 strain was constructed; subsequently, optimal fermentation conditions for isobutanol production using this strain were determined. Next, the raw EFBs were hydrothermally pretreated at 190 °C for 15 min, and the pretreated EFBs were hydrolyzed using 10 FPU of cellulase/g glucan. Finally, the resulting hydrolysate was fermented at 25 °C for 84 h, and isobutanol give rise to the yield of 0.26 g isobutanol/g glucose. These results imply that 80.1 g of isobutanol could be produced from 1 kg dry weight of EFBs. To our knowledge, this is the first feasibility study of isobutanol production from pretreated EFBs.

Suggested Citation

  • Yang, Jungwoo & Kim, Jae Kyun & Ahn, Jung-Oh & Song, Young-Ha & Shin, Chul-Soo & Park, Yong-Cheol & Kim, Kyoung Heon, 2020. "Isobutanol production from empty fruit bunches," Renewable Energy, Elsevier, vol. 157(C), pages 1124-1130.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1124-1130
    DOI: 10.1016/j.renene.2020.05.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shota Atsumi & Taizo Hanai & James C. Liao, 2008. "Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels," Nature, Nature, vol. 451(7174), pages 86-89, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nestor Sanchez & Ruth Yolanda Ruiz & Nicolas Infante & Martha Cobo, 2017. "Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation," Energies, MDPI, vol. 10(12), pages 1-16, December.
    2. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    3. Chengzhang Fu & Yunkun Liu & Christine Walt & Sari Rasheed & Chantal D. Bader & Peer Lukat & Markus Neuber & F. P. Jake Haeckl & Wulf Blankenfeldt & Olga V. Kalinina & Rolf Müller, 2024. "Elucidation of unusual biosynthesis and DnaN-targeting mode of action of potent anti-tuberculosis antibiotics Mycoplanecins," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    5. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    6. Hejna, Aleksander & Kosmela, Paulina & Formela, Krzysztof & Piszczyk, Łukasz & Haponiuk, Józef T., 2016. "Potential applications of crude glycerol in polymer technology–Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 449-475.
    7. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    8. Homeyra Piri & Massimiliano Renzi & Marco Bietresato, 2023. "Technical Implications of the Use of Biofuels in Agricultural and Industrial Compression-Ignition Engines with a Special Focus on the Interactions with (Bio)lubricants," Energies, MDPI, vol. 17(1), pages 1-45, December.
    9. Li, Li & Wang, Jianxin & Wang, Zhi & Liu, Haoye, 2015. "Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol," Energy, Elsevier, vol. 80(C), pages 575-581.
    10. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Gonçalves, Ana L. & Simões, Manuel, 2017. "Metabolic engineering of Escherichia coli for higher alcohols production: An environmentally friendly alternative to fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 580-589.
    12. Zhu, Lifeng & Qian, Yong & Wang, Xiaole & Lu, Xingcai, 2015. "Effects of direct injection timing and premixed ratio on combustion and emissions characteristics of RCCI (Reactivity Controlled Compression Ignition) with N-heptane/gasoline-like fuels," Energy, Elsevier, vol. 93(P1), pages 383-392.
    13. Ruozhou Fang & Chih-Jen Sung, 2021. "A Rapid Compression Machine Study of 2-Phenylethanol Autoignition at Low-To-Intermediate Temperatures," Energies, MDPI, vol. 14(22), pages 1-13, November.
    14. Ulugbek Azimov & Victor Okoro & Hector H. Hernandez, 2021. "Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    15. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    16. Rajneesh, & Singh, Shailendra P. & Pathak, Jainendra & Sinha, Rajeshwer P., 2017. "Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 578-595.
    17. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    18. Yongfei Liu & Wei Wang & An-Ping Zeng, 2022. "Biosynthesizing structurally diverse diols via a general route combining oxidative and reductive formations of OH-groups," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Bharathiraja, B. & Iyyappan, J. & Gopinath, M. & Jayamuthunagai, J. & PraveenKumar, R., 2022. "Transgenicism in algae: Challenges in compatibility, global scenario and future prospects for next generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Kumar, Gopal Ramesh & Chowdhary, Nupoor, 2016. "Biotechnological and bioinformatics approaches for augmentation of biohydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1194-1206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1124-1130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.