IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6696-d656975.html
   My bibliography  Save this article

The Effect of Crankshaft Phasing and Port Timing Asymmetry on Opposed-Piston Engine Thermal Efficiency

Author

Listed:
  • Alex G. Young

    (Institute for Advanced Automotive Propulsion Systems (IAAPS), University of Bath, Claverton Down, Bath BA2 7AY, UK)

  • Aaron W. Costall

    (Institute for Advanced Automotive Propulsion Systems (IAAPS), University of Bath, Claverton Down, Bath BA2 7AY, UK)

  • Daniel Coren

    (Institute for Advanced Automotive Propulsion Systems (IAAPS), University of Bath, Claverton Down, Bath BA2 7AY, UK)

  • James W. G. Turner

    (Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology (KAUST), Jeddah 23955-6900, Saudi Arabia)

Abstract

Opposed-piston, two-stroke engines reveal degrees of freedom that make them excellent candidates for next generation, highly efficient internal combustion engines for hybrid electric vehicles and power systems. This article reports simulation results that explore the influence of key control and geometrical parameters, specifically crankshaft phasing and intake and exhaust port height-to-stroke ratios, in obtaining best thermal efficiency. A model of a 0.75 L, single-cylinder opposed-piston two-stroke engine is exercised to predict fuel consumption as engine speed, load, crankshaft phasing, intake and exhaust port height-to-stroke ratios, and stoichiometry are varied for medium-duty truck and range extender applications. Under stoichiometric operation, optimal crankshaft phasing is seen at 0–5°, lower than reported in the literature. If stoichiometric operation is not mandated, best fuel consumption is achieved at an air-to-fuel equivalence ratio λ = 1.25 and 5–10° crankshaft phase angle, enabling a ~10 g/kWh (~4%) improvement in average brake-specific fuel consumption across medium-duty truck operating points. In range extender form, the engine provides 30 kW output power in accordance with a survey of range extender engines. In this role, there is a clear distinction between low-speed, high-load operation and vice versa. The decision as to which is more appropriate would be based on minimizing total owning and operating cost, itself a trade-off between better thermal efficiency (and thus lower fuel cost) and greater durability.

Suggested Citation

  • Alex G. Young & Aaron W. Costall & Daniel Coren & James W. G. Turner, 2021. "The Effect of Crankshaft Phasing and Port Timing Asymmetry on Opposed-Piston Engine Thermal Efficiency," Energies, MDPI, vol. 14(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6696-:d:656975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6696/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6696/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fukang Ma & Lei Zhang & Tiexiong Su, 2018. "Simulation Modeling and Optimization of Uniflow Scavenging System Parameters on Opposed-Piston Two-Stroke Engines," Energies, MDPI, vol. 11(4), pages 1-15, April.
    2. Fukang Ma & Changlu Zhao & Fujun Zhang & Zhenfeng Zhao & Shuanlu Zhang, 2015. "Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 8(6), pages 1-19, June.
    3. Fu-Kang Ma & Jun Wang & Yao-Nan Feng & Yan-Gang Zhang & Tie-Xiong Su & Yi Zhang & Yu-Hang Liu, 2017. "Parameter Optimization on the Uniflow Scavenging System of an OP2S-GDI Engine Based on Indicated Mean Effective Pressure (IMEP)," Energies, MDPI, vol. 10(3), pages 1-20, March.
    4. Fukang Ma & Zhenfeng Zhao & Yangang Zhang & Jun Wang & Yaonan Feng & Tiexiong Su & Yi Zhang & Yuhang Liu, 2017. "Simulation Modeling Method and Experimental Investigation on the Uniflow Scavenging System of an Opposed-Piston Folded-Cranktrain Diesel Engine," Energies, MDPI, vol. 10(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Qiao & Xucheng Duan & Kaisheng Huang & Yizhou Song & Jianan Qian, 2018. "Scavenging Ports’ Optimal Design of a Two-Stroke Small Aeroengine Based on the Benson/Bradham Model," Energies, MDPI, vol. 11(10), pages 1-26, October.
    2. Tianyou Pei & Feixue Chen & Shuheng Qiu & Dawei Wu & Weiwei Gao & Zhaoping Xu & Chi Zhang, 2022. "Research on the Intake Port of a Uniflow Scavenging GDI Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 15(6), pages 1-15, March.
    3. Maria Faruoli & Alessandro Coclite & Annarita Viggiano & Paolo Caso & Vinicio Magi, 2021. "A Comprehensive Numerical Analysis of the Scavenging Process in a Uniflow Two-Stroke Diesel Engine for General Aviation," Energies, MDPI, vol. 14(21), pages 1-19, November.
    4. Lei Zhang & Tiexiong Su & Yangang Zhang & Fukang Ma & Jinguan Yin & Yaonan Feng, 2017. "Numerical Investigation of the Effects of Split Injection Strategies on Combustion and Emission in an Opposed-Piston, Opposed-Cylinder (OPOC) Two-Stroke Diesel Engine," Energies, MDPI, vol. 10(5), pages 1-17, May.
    5. Yuan Qiao & Li Lin & Wei Zhong & Kaisheng Huang, 2020. "Investigation on the Performance Characteristics of 2-Stroke Heavy Fuel Light Aeroengine (2SHFLA) with Different Fuel Injection Systems: Modeling and Comparative Simulation," Energies, MDPI, vol. 13(19), pages 1-39, October.
    6. Yi Lu & Changlu Zhao & Zhe Zuo & Fujun Zhang & Shuanlu Zhang, 2017. "Research on the Common Rail Pressure Overshoot of Opposed-Piston Two-Stroke Diesel Engines," Energies, MDPI, vol. 10(4), pages 1-23, April.
    7. Ruomiao Yang & Tianfang Xie & Zhentao Liu, 2022. "The Application of Machine Learning Methods to Predict the Power Output of Internal Combustion Engines," Energies, MDPI, vol. 15(9), pages 1-16, April.
    8. Fukang Ma & Lei Zhang & Tiexiong Su, 2018. "Simulation Modeling and Optimization of Uniflow Scavenging System Parameters on Opposed-Piston Two-Stroke Engines," Energies, MDPI, vol. 11(4), pages 1-15, April.
    9. Jemni, Mohamed Ali & Kassem, Sahar Hadj & Driss, Zied & Abid, Mohamed Salah, 2018. "Effects of hydrogen enrichment and injection location on in-cylinder flow characteristics, performance and emissions of gaseous LPG engine," Energy, Elsevier, vol. 150(C), pages 92-108.
    10. Xu, Zheng & Ji, Fenzhu & Ding, Shuiting & Zhao, Yunhai & Zhang, Xiangbo & Zhou, Yu & Zhang, Qi & Du, Farong, 2020. "High-altitude performance and improvement methods of poppet valves 2-stroke aircraft diesel engine," Applied Energy, Elsevier, vol. 276(C).
    11. Borghi, Massimo & Mattarelli, Enrico & Muscoloni, Jarin & Rinaldini, Carlo Alberto & Savioli, Tommaso & Zardin, Barbara, 2017. "Design and experimental development of a compact and efficient range extender engine," Applied Energy, Elsevier, vol. 202(C), pages 507-526.
    12. Fu-Kang Ma & Jun Wang & Yao-Nan Feng & Yan-Gang Zhang & Tie-Xiong Su & Yi Zhang & Yu-Hang Liu, 2017. "Parameter Optimization on the Uniflow Scavenging System of an OP2S-GDI Engine Based on Indicated Mean Effective Pressure (IMEP)," Energies, MDPI, vol. 10(3), pages 1-20, March.
    13. Wei Yang & Lei Zhang & Fukang Ma & Dan Xu & Wenjing Ji & Yangyang Zhao & Jianing Zhang, 2022. "Simulation about the Effect of the Height-to-Stroke Ratios of Ports on Power and Emissions in an OP2S Engine Using Diesel/Methanol Blends," Energies, MDPI, vol. 15(8), pages 1-14, April.
    14. Paul Stewart & Chris Bingham, 2016. "Electrical Power and Energy Systems for Transportation Applications," Energies, MDPI, vol. 9(7), pages 1-3, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6696-:d:656975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.