IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7200-d670404.html
   My bibliography  Save this article

Design and Modelling of Eco-Friendly CH 3 NH 3 SnI 3 -Based Perovskite Solar Cells with Suitable Transport Layers

Author

Listed:
  • M. Mottakin

    (Department of Applied Chemistry and Chemical Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh)

  • K. Sobayel

    (Solar Energy Research Institute, The National University of Malaysia, Bangi 43600, Malaysia
    Environmental Assessment and Technology for Hazardous Waste Management Research Centre, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand)

  • Dilip Sarkar

    (Solar Energy Research Institute, The National University of Malaysia, Bangi 43600, Malaysia)

  • Hend Alkhammash

    (Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Sami Alharthi

    (Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Kuaanan Techato

    (Environmental Assessment and Technology for Hazardous Waste Management Research Centre, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
    Department of Sustainable Energy, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand)

  • Md. Shahiduzzaman

    (Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1292, Japan)

  • Nowshad Amin

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang 43000, Malaysia)

  • Kamaruzzaman Sopian

    (Solar Energy Research Institute, The National University of Malaysia, Bangi 43600, Malaysia)

  • Md. Akhtaruzzaman

    (Solar Energy Research Institute, The National University of Malaysia, Bangi 43600, Malaysia
    Environmental Assessment and Technology for Hazardous Waste Management Research Centre, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
    Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan)

Abstract

An ideal n-i-p perovskite solar cell employing a Pb free CH 3 NH 3 SnI 3 absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole transport material (HTL) constant. SCAPS-1D numerical simulator is used to quantify the effects of amphoteric defect based on CH 3 NH 3 SnI 3 absorber layer and the interface characteristics of both the electron transport layer (ETL) and hole transport layer (HTL). The study demonstrates that amphoteric defects in the absorber layer impact device performance significantly more than interface defects (IDL). The cell performed best at room temperature. Due to a reduction in V oc , PCE decreases with temperature. Defect tolerance limit for IL1 is 10 13 cm −3 , 10 16 cm −3 and 10 12 cm −3 for structures 1, 2 and 3 respectively. The defect tolerance limit for IL2 is 10 14 cm −3 . With the proposed device structure FTO/PCBM/CH 3 NH 3 SnI 3 /CuO shows the maximum efficiency of 25.45% (V oc = 0.97 V, J sc = 35.19 mA/cm 2 , FF = 74.38%), for the structure FTO/TiO 2 /CH 3 NH 3 SnI 3 /CuO the best PCE is obtained 26.92% (V oc = 0.99 V, J sc = 36.81 mA/cm 2 , FF = 73.80%) and device structure of FTO/WO 3 /CH 3 NH 3 SnI 3 /CuO gives the maximum efficiency 24.57% (V oc = 0.90 V, J sc = 36.73 mA/cm 2 , FF = 74.93%) under optimum conditions. Compared to others, the FTO/TiO 2 /CH 3 NH 3 SnI 3 /CuO system provides better performance and better defect tolerance capacity.

Suggested Citation

  • M. Mottakin & K. Sobayel & Dilip Sarkar & Hend Alkhammash & Sami Alharthi & Kuaanan Techato & Md. Shahiduzzaman & Nowshad Amin & Kamaruzzaman Sopian & Md. Akhtaruzzaman, 2021. "Design and Modelling of Eco-Friendly CH 3 NH 3 SnI 3 -Based Perovskite Solar Cells with Suitable Transport Layers," Energies, MDPI, vol. 14(21), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7200-:d:670404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Shum & Anna Tsatskina, 2016. "Solar cells: Stabilizing tin-based perovskites," Nature Energy, Nature, vol. 1(12), pages 1-2, December.
    2. Xiaopeng Zheng & Bo Chen & Jun Dai & Yanjun Fang & Yang Bai & Yuze Lin & Haotong Wei & Xiao Cheng Zeng & Jinsong Huang, 2017. "Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations," Nature Energy, Nature, vol. 2(7), pages 1-9, July.
    3. Bernabe Mari & Krishna R. Adhikari, 2016. "Numerical Simulations on Perovskite Photovoltaic Devices," Chapters, in: Likun Pan & Guang Zhu (ed.), Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, IntechOpen.
    4. Xianyuan Jiang & Fei Wang & Qi Wei & Hansheng Li & Yuequn Shang & Wenjia Zhou & Cheng Wang & Peihong Cheng & Qi Chen & Liwei Chen & Zhijun Ning, 2020. "Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo A. Marques Lameirinhas & João Paulo N. Torres & João P. de Melo Cunha, 2022. "A Photovoltaic Technology Review: History, Fundamentals and Applications," Energies, MDPI, vol. 15(5), pages 1-44, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Guo & Shasha Li & Y. Norman Zhou & Wei D. Lu & Yong Yan & Yimin A. Wu, 2024. "Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Guus J. W. Aalbers & Tom P. A. Pol & Kunal Datta & Willemijn H. M. Remmerswaal & Martijn M. Wienk & René A. J. Janssen, 2024. "Effect of sub-bandgap defects on radiative and non-radiative open-circuit voltage losses in perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    4. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Yehui Wen & Tianchi Zhang & Xingtao Wang & Tiantian Liu & Yu Wang & Rui Zhang & Miao Kan & Li Wan & Weihua Ning & Yong Wang & Deren Yang, 2024. "Amorphous (lysine)2PbI2 layer enhanced perovskite photovoltaics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Stefania Cacovich & Guillaume Vidon & Matteo Degani & Marie Legrand & Laxman Gouda & Jean-Baptiste Puel & Yana Vaynzof & Jean-François Guillemoles & Daniel Ory & Giulia Grancini, 2022. "Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Chenxu Zhao & Zhiwen Zhou & Masaud Almalki & Michael A. Hope & Jiashang Zhao & Thibaut Gallet & Anurag Krishna & Aditya Mishra & Felix T. Eickemeyer & Jia Xu & Yingguo Yang & Shaik M. Zakeeruddin & Al, 2024. "Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Marwa. S. Salem & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Adwan Alanazi & Mohammad T. Alshammari & Christian Gontand, 2021. "Analysis of Hybrid Hetero-Homo Junction Lead-Free Perovskite Solar Cells by SCAPS Simulator," Energies, MDPI, vol. 14(18), pages 1-22, September.
    12. Md Aslam Uddin & Prem Jyoti Singh Rana & Zhenyi Ni & Guang Yang & Mingze Li & Mengru Wang & Hangyu Gu & Hengkai Zhang & Benjia Dak Dou & Jinsong Huang, 2024. "Iodide manipulation using zinc additives for efficient perovskite solar minimodules," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Syed Afaq Ali Shah & Muhammad Hassan Sayyad & Karim Khan & Kai Guo & Fei Shen & Jinghua Sun & Ayesha Khan Tareen & Yubin Gong & Zhongyi Guo, 2020. "Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells," Energies, MDPI, vol. 13(19), pages 1-42, September.
    14. Paolo Mariani & Miguel Ángel Molina-García & Jessica Barichello & Marilena Isabella Zappia & Erica Magliano & Luigi Angelo Castriotta & Luca Gabatel & Sanjay Balkrishna Thorat & Antonio Esaú Rio Casti, 2024. "Low-temperature strain-free encapsulation for perovskite solar cells and modules passing multifaceted accelerated ageing tests," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
    16. Bo Chen & Chengbin Fei & Shangshang Chen & Hangyu Gu & Xun Xiao & Jinsong Huang, 2021. "Recycling lead and transparent conductors from perovskite solar modules," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    17. Zihan Qu & Yang Zhao & Fei Ma & Le Mei & Xian-Kai Chen & Haitao Zhou & Xinbo Chu & Yingguo Yang & Qi Jiang & Xingwang Zhang & Jingbi You, 2024. "Enhanced charge carrier transport and defects mitigation of passivation layer for efficient perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Tinghuan Yang & Lili Gao & Jing Lu & Chuang Ma & Yachao Du & Peijun Wang & Zicheng Ding & Shiqiang Wang & Peng Xu & Dongle Liu & Haojin Li & Xiaoming Chang & Junjie Fang & Wenming Tian & Yingguo Yang , 2023. "One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Hobeom Kim & So-Min Yoo & Bin Ding & Hiroyuki Kanda & Naoyuki Shibayama & Maria A. Syzgantseva & Farzaneh Fadaei Tirani & Pascal Schouwink & Hyung Joong Yun & Byoungchul Son & Yong Ding & Beom-Soo Kim, 2024. "Shallow-level defect passivation by 6H perovskite polytype for highly efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7200-:d:670404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.