IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6980-d663796.html
   My bibliography  Save this article

Self-Acting Formation of an ANFO Similar Type of Explosive under Fire Conditions: A Case Study

Author

Listed:
  • Paweł Wolny

    (Faculty of Process and Environmental Engineering, Łódź University of Technology, 90-924 Łódź, Poland)

  • Norbert Tuśnio

    (Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, 01-629 Warsaw, Poland)

  • Artur Lewandowski

    (Faculty of Process and Environmental Engineering, Łódź University of Technology, 90-924 Łódź, Poland)

  • Filip Mikołajczyk

    (Faculty of Process and Environmental Engineering, Łódź University of Technology, 90-924 Łódź, Poland)

  • Sławomir Kuberski

    (Faculty of Process and Environmental Engineering, Łódź University of Technology, 90-924 Łódź, Poland)

Abstract

On 2 October 2003 in Saint-Romain-en-Jarez (France) a fire in a farm building triggered an explosion in which 26 people were injured. Police investigation, based solely on an analysis of the effects and on general engineering knowledge, showed that the explosion was caused by an uncontrollably generated mixture of ammonium nitrate (AN) and molten plastic crates which formed an explosive mixture similar to ammonium nitrate fuel oil (ANFO). This is the only commonly known example of an ammonium nitrate blast taking place at its end user destination. Is such an explanation of the incident plausible and could a similar blast possibly happen anywhere else? The experimental results support this thesis of French investigators but raise further doubts. Laboratory reconstruction of the self-acting process of generating the explosive material confirmed the investigators’ report. However, other materials at the incident site could have influenced the final outcome too. The lab-recreated explosion of a mixture of AN and molten plastic partially confirmed the report’s thesis.

Suggested Citation

  • Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2021. "Self-Acting Formation of an ANFO Similar Type of Explosive under Fire Conditions: A Case Study," Energies, MDPI, vol. 14(21), pages 1-10, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6980-:d:663796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrzej Biessikirski & Suzana Gotovac Atlagić & Mateusz Pytlik & Łukasz Kuterasiński & Michał Dworzak & Michał Twardosz & Dagmara Nowak-Senderowska & Bogna Daria Napruszewska, 2021. "The Influence of Microstructured Charcoal Additive on ANFO’s Properties," Energies, MDPI, vol. 14(14), pages 1-19, July.
    2. Andrzej Biessikirski & Dominik Czerwonka & Jolanta Biegańska & Łukasz Kuterasiński & Magdalena Ziąbka & Michał Dworzak & Michał Twardosz, 2020. "Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing," Energies, MDPI, vol. 14(1), pages 1-15, December.
    3. Suzana Gotovac Atlagic & Andrzej Biessikirski & Łukasz Kuterasiński & Michał Dworzak & Michał Twardosz & Niki Sorogas & John Arvanitidis, 2020. "On the Investigation of Microstructured Charcoal as an ANFO Blasting Enhancer," Energies, MDPI, vol. 13(18), pages 1-13, September.
    4. Andrzej Biessikirski & Łukasz Kuterasiński & Michał Dworzak & Michał Twardosz & Maciej Tatko & Bogna Daria Napruszewska, 2020. "On the Influence of the Ammonium Nitrate(V) Provenance on Its Usefulness for the Manufacture of ANFO Type Explosives," Energies, MDPI, vol. 13(18), pages 1-11, September.
    5. Andrzej Biessikirski & Mateusz Pytlik & Łukasz Kuterasiński & Michał Dworzak & Michał Twardosz & Bogna Daria Napruszewska, 2020. "Influence of the Ammonium Nitrate(V) Porous Prill Assortments and Absorption Index on Ammonium Nitrate Fuel Oil Blasting Properties," Energies, MDPI, vol. 13(15), pages 1-10, July.
    6. Andrzej Biessikirski & Krzysztof Barański & Mateusz Pytlik & Łukasz Kuterasiński & Jolanta Biegańska & Konrad Słowiński, 2021. "Application of Silicon Dioxide as the Inert Component or Oxide Component Enhancer in ANFO," Energies, MDPI, vol. 14(8), pages 1-12, April.
    7. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Carbon Dioxide Gasification Kinetics of Char from Rapeseed Oil Press Cake," Energies, MDPI, vol. 13(9), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Wolny & Norbert Tuśnio & Filip Mikołajczyk, 2022. "Explosion Risks during Firefighting Operations in Storage Rooms and the Transport of Ammonium Nitrate-Based Fertilizers," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    2. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2022. "Formation of an Ammonium Nitrate Fuel Oil Similar Type of Explosive under Fire Conditions: Materials Based on Selected Polymers (PUR)," Energies, MDPI, vol. 15(5), pages 1-20, February.
    3. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2022. "Formation of ANFO Analogues under Fire Conditions in the Presence of Common Plastics," Energies, MDPI, vol. 15(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Biessikirski & Suzana Gotovac Atlagić & Mateusz Pytlik & Łukasz Kuterasiński & Michał Dworzak & Michał Twardosz & Dagmara Nowak-Senderowska & Bogna Daria Napruszewska, 2021. "The Influence of Microstructured Charcoal Additive on ANFO’s Properties," Energies, MDPI, vol. 14(14), pages 1-19, July.
    2. Paweł Wolny & Norbert Tuśnio & Filip Mikołajczyk, 2022. "Explosion Risks during Firefighting Operations in Storage Rooms and the Transport of Ammonium Nitrate-Based Fertilizers," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    3. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    4. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.
    5. Andrzej Biessikirski & Dominik Czerwonka & Jolanta Biegańska & Łukasz Kuterasiński & Magdalena Ziąbka & Michał Dworzak & Michał Twardosz, 2020. "Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing," Energies, MDPI, vol. 14(1), pages 1-15, December.
    6. Jolanta Biegańska & Krzysztof Barański, 2022. "Thermodynamic Analysis of the Possibility of Using Biomass as a Component of High-Energy Materials," Energies, MDPI, vol. 15(15), pages 1-13, August.
    7. Jolanta Biegańska & Krzysztof Barański & Kamil Hebda & Mateusz Pytlik, 2022. "Thermodynamic Assessment of the Impact of Selected Plastics on the Energy Parameters of Explosives," Energies, MDPI, vol. 15(24), pages 1-13, December.
    8. Vječislav Bohanek & Muhamed Sućeska & Mario Dobrilović & Philipp Hartlieb, 2022. "Effect of Confinement on Detonation Velocity and Plate Dent Test Results for ANFO Explosive," Energies, MDPI, vol. 15(12), pages 1-9, June.
    9. Alejandro Lyons Cerón & Alar Konist, 2023. "Co-Pyrolysis of Woody Biomass and Oil Shale in a Batch Reactor in CO 2 , CO 2 -H 2 O, and Ar Atmospheres," Energies, MDPI, vol. 16(7), pages 1-14, March.
    10. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2022. "Formation of an Ammonium Nitrate Fuel Oil Similar Type of Explosive under Fire Conditions: Materials Based on Selected Polymers (PUR)," Energies, MDPI, vol. 15(5), pages 1-20, February.
    11. Andreas Schwabauer & Marco Mancini & Yunus Poyraz & Roman Weber, 2021. "On the Mathematical Modelling of a Moving-Bed Counter-Current Gasifier Fuelled with Wood-Pellets," Energies, MDPI, vol. 14(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6980-:d:663796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.