IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1674-d756993.html
   My bibliography  Save this article

Formation of an Ammonium Nitrate Fuel Oil Similar Type of Explosive under Fire Conditions: Materials Based on Selected Polymers (PUR)

Author

Listed:
  • Paweł Wolny

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland)

  • Norbert Tuśnio

    (Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, 01-629 Warsaw, Poland)

  • Artur Lewandowski

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland)

  • Filip Mikołajczyk

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland)

  • Sławomir Kuberski

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

Polyurethanes (PURs) are a group of polymers with the most versatile properties and the broadest spectrum of application. Their name comes from the urethane group. PURs were introduced to the market on a large-scale basis by Bayer in 1942, in the form of Perlon U and Igamid U fibers produced by gradual polyaddition of diisocyanates and polyols. The development of PURs-production technology and the multitude of applications resulted in their widespread use. This group is so extensive that polyurethanes alone accounted for about 6% of the global production of polymers (2019)—most of them in the form of foam. Therefore, polyurethane can be found in a huge number of products—some of them stored in the vicinity of ammonium nitrate (AN). In the previous two articles, we showed that polymers and AN—stored within the same building—in fire conditions may, under certain circumstances, spontaneously transform into a material of explosive properties. The aim of this article is to check whether PUR, when in contact with AN, creates additional hazards, similarly to the previously tested polymers.

Suggested Citation

  • Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2022. "Formation of an Ammonium Nitrate Fuel Oil Similar Type of Explosive under Fire Conditions: Materials Based on Selected Polymers (PUR)," Energies, MDPI, vol. 15(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1674-:d:756993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2021. "Self-Acting Formation of an ANFO Similar Type of Explosive under Fire Conditions: A Case Study," Energies, MDPI, vol. 14(21), pages 1-10, October.
    2. Robert Adamski & Dorota Siuta & Bożena Kukfisz & Michał Frydrysiak & Mirosława Prochoń, 2021. "Integration of Safety Aspects in Modeling of Superheated Steam Flash Drying of Tobacco," Energies, MDPI, vol. 14(18), pages 1-22, September.
    3. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2022. "Formation of ANFO Analogues under Fire Conditions in the Presence of Common Plastics," Energies, MDPI, vol. 15(2), pages 1-19, January.
    4. Suzana Gotovac Atlagic & Andrzej Biessikirski & Łukasz Kuterasiński & Michał Dworzak & Michał Twardosz & Niki Sorogas & John Arvanitidis, 2020. "On the Investigation of Microstructured Charcoal as an ANFO Blasting Enhancer," Energies, MDPI, vol. 13(18), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Wolny & Norbert Tuśnio & Filip Mikołajczyk, 2022. "Explosion Risks during Firefighting Operations in Storage Rooms and the Transport of Ammonium Nitrate-Based Fertilizers," Sustainability, MDPI, vol. 14(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Wolny & Norbert Tuśnio & Filip Mikołajczyk, 2022. "Explosion Risks during Firefighting Operations in Storage Rooms and the Transport of Ammonium Nitrate-Based Fertilizers," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    2. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2022. "Formation of ANFO Analogues under Fire Conditions in the Presence of Common Plastics," Energies, MDPI, vol. 15(2), pages 1-19, January.
    3. Andrzej Biessikirski & Dominik Czerwonka & Jolanta Biegańska & Łukasz Kuterasiński & Magdalena Ziąbka & Michał Dworzak & Michał Twardosz, 2020. "Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing," Energies, MDPI, vol. 14(1), pages 1-15, December.
    4. Dorota Siuta & Bożena Kukfisz & Aneta Kuczyńska & Piotr Tomasz Mitkowski, 2022. "Methodology for the Determination of a Process Safety Culture Index and Safety Culture Maturity Level in Industries," IJERPH, MDPI, vol. 19(5), pages 1-18, February.
    5. Juju Jiang & Xiaoquan Li & Siting Liang & Yuankun Zhong & Lei Yang & Peng Hao & Jeffrey Soar, 2022. "Study of Parameters and Theory of Sucrose Dust Explosion," Energies, MDPI, vol. 15(4), pages 1-13, February.
    6. Andrzej Biessikirski & Suzana Gotovac Atlagić & Mateusz Pytlik & Łukasz Kuterasiński & Michał Dworzak & Michał Twardosz & Dagmara Nowak-Senderowska & Bogna Daria Napruszewska, 2021. "The Influence of Microstructured Charcoal Additive on ANFO’s Properties," Energies, MDPI, vol. 14(14), pages 1-19, July.
    7. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2021. "Self-Acting Formation of an ANFO Similar Type of Explosive under Fire Conditions: A Case Study," Energies, MDPI, vol. 14(21), pages 1-10, October.
    8. Piotr Piersa & Szymon Szufa & Justyna Czerwińska & Hilal Ünyay & Łukasz Adrian & Grzegorz Wielgosinski & Andrzej Obraniak & Wiktoria Lewandowska & Marta Marczak-Grzesik & Maria Dzikuć & Zdzislawa Roma, 2021. "Pine Wood and Sewage Sludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers," Energies, MDPI, vol. 14(23), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1674-:d:756993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.