IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8565-d861732.html
   My bibliography  Save this article

Explosion Risks during Firefighting Operations in Storage Rooms and the Transport of Ammonium Nitrate-Based Fertilizers

Author

Listed:
  • Paweł Wolny

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland)

  • Norbert Tuśnio

    (Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, 01-629 Warsaw, Poland)

  • Filip Mikołajczyk

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

Ammonium nitrate (AN) is a strong oxidizer that undergoes phase transitions and thermal decomposition at relatively low temperatures. This—as verified by historical facts—constitutes a challenge for the fire department during rescue operations. AN is also a highly reactive material widely used for the production of, i.a., fertilizers and explosives. The latter are popular not only in military applications but also in industrial ones, such as mining. They include ammonites and amatols utilized in coal mining, as well as Ammonium Nitrate Fuel Oil (ANFO) utilized in, i.a., rock mining. As a simple and cheap material, ANFO also tends to be used by terrorists. The spontaneous formation of an AN and polymers mixture—similar to ANFO in terms of composition and explosion force—was observed in fire conditions during previous research. At individual stages (from creation to exploitation), AN often comes into direct contact with various polymers. Polyolefins, in particular polyethylene (PE) and polypropylene (PP), are among the most popular groups of such materials. They are used for the production of, i.a., foil packaging and flexible intermediate bulk containers for the storage and transport of fertilizers. Despite the frequent mutual contact of these materials, there is little information in the literature on the interaction of AN and its polymer-made packaging in fire conditions. For this reason, it was decided to conduct a series of thermal analyses using Differential Scanning Calorimetry (DSC) to study the material behavior under the influence of high temperature. As it turns out in practice, the spontaneous formation of a mixture similar to ANFO—in terms of composition and explosion force—can be observed in fire conditions. Due to the results indicating a potentially explosive course of the reaction, laboratory tests on the macro scale were also carried out. The performed observations show that it may be necessary to create a procedure containing several different test methods in order to predict a mixture’s behavior during a fire and to define the appropriate guidelines for firefighting teams. Such guidelines would enable firefighters to prepare the right equipment during a firefighting operation and to develop a strategy based on the observed course of events.

Suggested Citation

  • Paweł Wolny & Norbert Tuśnio & Filip Mikołajczyk, 2022. "Explosion Risks during Firefighting Operations in Storage Rooms and the Transport of Ammonium Nitrate-Based Fertilizers," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8565-:d:861732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suzana Gotovac Atlagic & Andrzej Biessikirski & Łukasz Kuterasiński & Michał Dworzak & Michał Twardosz & Niki Sorogas & John Arvanitidis, 2020. "On the Investigation of Microstructured Charcoal as an ANFO Blasting Enhancer," Energies, MDPI, vol. 13(18), pages 1-13, September.
    2. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2021. "Self-Acting Formation of an ANFO Similar Type of Explosive under Fire Conditions: A Case Study," Energies, MDPI, vol. 14(21), pages 1-10, October.
    3. Panda, Achyut K. & Singh, R.K. & Mishra, D.K., 2010. "Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products--A world prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 233-248, January.
    4. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2022. "Formation of an Ammonium Nitrate Fuel Oil Similar Type of Explosive under Fire Conditions: Materials Based on Selected Polymers (PUR)," Energies, MDPI, vol. 15(5), pages 1-20, February.
    5. Andrzej Biessikirski & Krzysztof Barański & Mateusz Pytlik & Łukasz Kuterasiński & Jolanta Biegańska & Konrad Słowiński, 2021. "Application of Silicon Dioxide as the Inert Component or Oxide Component Enhancer in ANFO," Energies, MDPI, vol. 14(8), pages 1-12, April.
    6. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2022. "Formation of ANFO Analogues under Fire Conditions in the Presence of Common Plastics," Energies, MDPI, vol. 15(2), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2022. "Formation of an Ammonium Nitrate Fuel Oil Similar Type of Explosive under Fire Conditions: Materials Based on Selected Polymers (PUR)," Energies, MDPI, vol. 15(5), pages 1-20, February.
    2. Andrzej Biessikirski & Suzana Gotovac Atlagić & Mateusz Pytlik & Łukasz Kuterasiński & Michał Dworzak & Michał Twardosz & Dagmara Nowak-Senderowska & Bogna Daria Napruszewska, 2021. "The Influence of Microstructured Charcoal Additive on ANFO’s Properties," Energies, MDPI, vol. 14(14), pages 1-19, July.
    3. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2021. "Self-Acting Formation of an ANFO Similar Type of Explosive under Fire Conditions: A Case Study," Energies, MDPI, vol. 14(21), pages 1-10, October.
    4. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    5. Muise, Isaac & Adams, Michelle & Côté, Ray & Price, G.W., 2016. "Attitudes to the recovery and recycling of agricultural plastics waste: A case study of Nova Scotia, Canada," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 137-145.
    6. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Vlasopoulos, Antonis & Malinauskaite, Jurgita & Żabnieńska-Góra, Alina & Jouhara, Hussam, 2023. "Life cycle assessment of plastic waste and energy recovery," Energy, Elsevier, vol. 277(C).
    8. Sri Devi Kumari, T. & Jebaraj, Adriel J.J. & Raj, T. Antony & Jeyakumar, D. & Kumar, T. Prem, 2016. "A kish graphitic lithium-insertion anode material obtained from non-biodegradable plastic waste," Energy, Elsevier, vol. 95(C), pages 483-493.
    9. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    10. Rumana Hossain & Md Tasbirul Islam & Riya Shanker & Debishree Khan & Katherine Elizabeth Sarah Locock & Anirban Ghose & Heinz Schandl & Rita Dhodapkar & Veena Sahajwalla, 2022. "Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    11. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    12. Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2022. "Formation of ANFO Analogues under Fire Conditions in the Presence of Common Plastics," Energies, MDPI, vol. 15(2), pages 1-19, January.
    13. Andrzej Biessikirski & Dominik Czerwonka & Jolanta Biegańska & Łukasz Kuterasiński & Magdalena Ziąbka & Michał Dworzak & Michał Twardosz, 2020. "Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing," Energies, MDPI, vol. 14(1), pages 1-15, December.
    14. Winans, K. & Kendall, A. & Deng, H., 2017. "The history and current applications of the circular economy concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 825-833.
    15. Ghulamullah Maitlo & Imran Ali & Hubdar Ali Maitlo & Safdar Ali & Imran Nazir Unar & Muhammad Bilal Ahmad & Darya Khan Bhutto & Ramesh Kumar Karmani & Shamim ur Rehman Naich & Raja Umer Sajjad & Sikan, 2022. "Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment," Sustainability, MDPI, vol. 14(18), pages 1-27, September.
    16. Shaik Anwar Ahamed Nabeela Nasreen & Subramanian Sundarrajan & Syed Abdulrahim Syed Nizar & He Wei & Dong Xuecheng & Seeram Ramakrishna, 2022. "Pyrolysis, Microwave, Chemical and Biodegradation Methodology in Recycling of Plastic Waste: a Circular Economy Concept," Circular Economy and Sustainability, Springer, vol. 2(2), pages 609-632, June.
    17. Jolanta Biegańska & Krzysztof Barański, 2022. "Thermodynamic Analysis of the Possibility of Using Biomass as a Component of High-Energy Materials," Energies, MDPI, vol. 15(15), pages 1-13, August.
    18. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    19. Kumar, Sachin & Panda, Achyut K. & Singh, R.K., 2011. "A review on tertiary recycling of high-density polyethylene to fuel," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 893-910.
    20. Ying-Che Hung & Chien-Hua Ho & Liang-Yü Chen & Shih-Chieh Ma & Te-I Liu & Yi-Chen Shen, 2023. "Using a Low-Temperature Pyrolysis Device for Polymeric Waste to Implement a Distributed Energy System," Sustainability, MDPI, vol. 15(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8565-:d:861732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.