IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3145-d1112194.html
   My bibliography  Save this article

Co-Pyrolysis of Woody Biomass and Oil Shale in a Batch Reactor in CO 2 , CO 2 -H 2 O, and Ar Atmospheres

Author

Listed:
  • Alejandro Lyons Cerón

    (Department of Energy Technology, Tallinn University of Technology, Ehitajate tee 5, 12616 Tallinn, Estonia)

  • Alar Konist

    (Department of Energy Technology, Tallinn University of Technology, Ehitajate tee 5, 12616 Tallinn, Estonia)

Abstract

The partial replacement of fossil fuels with biomass provides an alternative to producing cleaner and more sustainable energy and fuels. Conventional shale oil production infrastructure can potentially be used in co-pyrolysis with biomass to reduce the use of oil shale and decrease its environmental impact. The effect of adding 10 and 30 wt% woody biomasses (spruce, alder, pine, and birch) into oil shale was studied through intermediate co-pyrolysis. The experiments were carried out in a batch reactor at 520 °C, with a 20 min residence time, in CO 2 , CO 2 -H 2 O 1:1, and Ar gas atmospheres. The solid products were collected and analyzed for elemental composition and surface area, while the composition of the gases was determined through gas chromatography. The difference in experimental and theoretical mass balances of fuel blends was lower than 2.5 wt% in all gas environments, indicating slight interactions between the fuels. CO 2 atmospheres contributed to increased decomposition, with up to 2.6 wt% lower solid products. Biomass increased the production of combustible gases, especially CO yields, from 0.42 to 1.30 vol%. The addition of biomass and the use of alternative atmospheres can improve pyrolysis through increased fuel decomposition and a lower share of residual mass from 74.4 wt% for oil shale to 58–70 wt% for oil shale and biomass blends.

Suggested Citation

  • Alejandro Lyons Cerón & Alar Konist, 2023. "Co-Pyrolysis of Woody Biomass and Oil Shale in a Batch Reactor in CO 2 , CO 2 -H 2 O, and Ar Atmospheres," Energies, MDPI, vol. 16(7), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3145-:d:1112194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alejandro Lyons Cerón & Alar Konist & Heidi Lees & Oliver Järvik, 2021. "Effect of Woody Biomass Gasification Process Conditions on the Composition of the Producer Gas," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    2. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    3. Chu-Yun Cheng & Chia-Chen Kuo & Ming-Wei Yang & Zong-Yu Zhuang & Po-Wei Lin & Yi-Fang Chen & Hong-Sung Yang & Cheng-Tung Chou, 2021. "CO 2 Capture from Flue Gas of a Coal-Fired Power Plant Using Three-Bed PSA Process," Energies, MDPI, vol. 14(12), pages 1-15, June.
    4. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    5. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    6. Evgeniy Ganev & Boyan Ivanov & Natasha Vaklieva-Bancheva & Elisaveta Kirilova & Yunzile Dzhelil, 2021. "A Multi-Objective Approach toward Optimal Design of Sustainable Integrated Biodiesel/Diesel Supply Chain Based on First- and Second-Generation Feedstock with Solid Waste Use," Energies, MDPI, vol. 14(8), pages 1-38, April.
    7. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Carbon Dioxide Gasification Kinetics of Char from Rapeseed Oil Press Cake," Energies, MDPI, vol. 13(9), pages 1-12, May.
    8. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.
    2. Alejandro Lyons Ceron & Richard Ochieng & Shiplu Sarker & Oliver Järvik & Alar Konist, 2024. "Co-Pyrolysis of Woody Biomass and Oil Shale—A Kinetics and Modelling Study," Energies, MDPI, vol. 17(5), pages 1-18, February.
    3. Andreas Schwabauer & Marco Mancini & Yunus Poyraz & Roman Weber, 2021. "On the Mathematical Modelling of a Moving-Bed Counter-Current Gasifier Fuelled with Wood-Pellets," Energies, MDPI, vol. 14(18), pages 1-24, September.
    4. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    5. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    6. Piris-Cabezas, Pedro & Lubowski, Ruben N. & Leslie, Gabriela, 2023. "Estimating the potential of international carbon markets to increase global climate ambition," World Development, Elsevier, vol. 167(C).
    7. Alt, Marius & Gallier, Carlo & Kesternich, Martin & Sturm, Bodo, 2023. "Collective minimum contributions to counteract the ratchet effect in the voluntary provision of public goods," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    8. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    9. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    10. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    11. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    12. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    13. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2021. "Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Thananya Janhuaton & Vatanavongs Ratanavaraha & Sajjakaj Jomnonkwao, 2024. "Forecasting Thailand’s Transportation CO 2 Emissions: A Comparison among Artificial Intelligent Models," Forecasting, MDPI, vol. 6(2), pages 1-23, June.
    15. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    16. He, Yahui & Li, Xiaofu & Meng, Li & Zhang, Wenqi & Wang, Yinfeng & Wang, Lei & Bi, Xiaotao & Zhu, Yuezhao, 2024. "Experimental investigation on high-temperature co-gasification and melting behavior of petrochemical sludge and bituminous coal in CO2 atmosphere," Energy, Elsevier, vol. 303(C).
    17. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    18. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    19. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    20. Qi, Ye & Lu, Jiaqi & Liu, Tianle, 2024. "Measuring energy transition away from fossil fuels: A new index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3145-:d:1112194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.