IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v250y2022ics0360544222007526.html
   My bibliography  Save this article

New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam

Author

Listed:
  • Anufriev, I.S.
  • Kopyev, E.P.
  • Alekseenko, S.V.
  • Sharypov, O.V.
  • Vigriyanov, M.S.

Abstract

The huge amounts of accumulated unclaimed liquid hydrocarbon waste (waste from oil production and oil refining, etc.) determine the prospects for their involvement in energy production. The Waste-to-Energy technology improves economic efficiency through low energy costs. Efficient use of waste for energy production requires the creation of new technologies with high energy efficiency and low emissions. The paper proposes and substantiates a promising new environmentally friendly Waste-to-Energy method of burning liquid fuel with injection of superheated steam (SIM) to the combustion zone. The authors have developed a new burner to combust liquid waste when producing energy (protected by patents of the Russian Federation), in which the fuel is atomized by a jet of superheated steam. This approach provides efficient fuel dispersion, the ability to burn a wide range of waste, high fuel combustion efficiency, long service life due to the absence of fuel injectors, and reduction of toxic combustion products due to steam. The large-scale introduction of new burners based on the SIM combustion technology requires reliable scientific data and pilot test results. First of all, this is the influence of operating parameters (steam flow rate and temperature, fuel and air flow rates) on the combustion performance in the oil-steam burner being developed. The aim of the work is complex laboratory and experimental studies of the characteristics of fuel combustion in a new burner with a controlled excess air ratio. Forced air supply to the combustion chamber of a steam-oil burner is a novelty of the burner under study. Based on the results of laboratory studies, the optimal ratios of operating parameters were found (fuel, steam and air flow rates: 1:0.8:2.75), which provide the best thermal and environmental performance (NOx<35 ppm, CO < 25 ppm). A significant reduction in the content of nitrogen oxides in the flue gases up to 70% was achieved with a high completeness of fuel combustion due to the joint control of steam concentration and excess factor in the gas generation chamber. This claims the proposed burner as a low emission one. To confirm the achieved effect, in this work, for the first time, experimental tests of the burner were carried out under the operating conditions of a low-power boiler plant (10–40 kW). Successful tests prove the efficiency of using the developed burner for solving the problem of efficient and environmentally friendly combustion of fuel (including liquid combustible waste) for the production of thermal energy at small-scale energy facilities.

Suggested Citation

  • Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007526
    DOI: 10.1016/j.energy.2022.123849
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222007526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chmielewski, Maciej & Niszczota, Paweł & Gieras, Marian, 2020. "Combustion efficiency of fuel-water emulsion in a small gas turbine," Energy, Elsevier, vol. 211(C).
    2. Cui, Gan & Dong, Zengrui & Wang, Shun & Xing, Xiao & Shan, Tianxiang & Li, Zili, 2020. "Effect of the water on the flame characteristics of methane hydrate combustion," Applied Energy, Elsevier, vol. 259(C).
    3. Lam, Su Shiung & Liew, Rock Keey & Jusoh, Ahmad & Chong, Cheng Tung & Ani, Farid Nasir & Chase, Howard A., 2016. "Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 741-753.
    4. Chen, Heng & Zhang, Meiyan & Xue, Kai & Xu, Gang & Yang, Yongping & Wang, Zepeng & Liu, Wenyi & Liu, Tong, 2020. "An innovative waste-to-energy system integrated with a coal-fired power plant," Energy, Elsevier, vol. 194(C).
    5. Rocha, Déborah Domingos da & de Castro Radicchi, Fábio & Lopes, Gustavo Santos & Brunocilla, Marcello Francisco & Gomes, Paulo César de Ferreira & Santos, Nathalia Duarte Souza Alvarenga & Malaquias, , 2021. "Study of the water injection control parameters on combustion performance of a spark-ignition engine," Energy, Elsevier, vol. 217(C).
    6. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    8. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Paweł Niszczota & Maciej Chmielewski & Marian Gieras, 2022. "Fuel-Water Emulsion as an Alternative Fuel for Gas Turbines in the Context of Combustion Process Properties—A Review," Energies, MDPI, vol. 15(23), pages 1-21, November.
    3. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Wang, Jia & Jiang, Jianchun & Li, Dongxian & Meng, Xianzhi & Zhan, Guowu & Wang, Yunpu & Zhang, Aihua & Sun, Yunjuan & Ruan, Roger & Ragauskas, Arthur J., 2022. "Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process," Applied Energy, Elsevier, vol. 323(C).
    5. Camilo Andrés Guerrero-Martin & Angie Tatiana Ortega-Ramírez & Paula Alejandra Perilla Rodríguez & Shalom Jireth Reyes López & Laura Estefanía Guerrero-Martin & Raúl Salinas-Silva & Stefanny Camacho-G, 2023. "Analysis of Environmental Sustainability through a Weighting Matrix in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    6. Xu, Lujiang & Chen, Shijia & Song, He & Liu, Yang & Shi, Chenchen & Lu, Qiang, 2020. "Comprehensively utilization of spent bleaching clay for producing high quality bio-fuel via fast pyrolysis process," Energy, Elsevier, vol. 190(C).
    7. Yao, Yue & Sun, Deqiang & Xu, Jin-Hua & Wang, Bin & Peng, Guohong & Sun, Bingmei, 2023. "Evaluation of enhanced oil recovery methods for mature continental heavy oil fields in China based on geology, technology and sustainability criteria," Energy, Elsevier, vol. 278(PB).
    8. Kim, Seonggon & Ko, Yunmo & Lee, Geun Jeong & Lee, Jae Won & Xu, Ronghuan & Ahn, Hyungseop & Kang, Yong Tae, 2023. "Sustainable energy harvesting from post-combustion CO2 capture using amine-functionalized solvents," Energy, Elsevier, vol. 267(C).
    9. Moreira, Rui & Bimbela, Fernando & Gandía, Luis M. & Ferreira, Abel & Sánchez, Jose Luis & Portugal, António, 2021. "Oxidative steam reforming of glycerol. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    11. Muhammad Usman & Muhammad Humayun & Syed Shaheen Shah & Habib Ullah & Asif A Tahir & Abbas Khan & Habib Ullah, 2021. "Bismuth-Graphene Nanohybrids: Synthesis, Reaction Mechanisms, and Photocatalytic Applications—A Review," Energies, MDPI, vol. 14(8), pages 1-36, April.
    12. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Thiago Rodrigo Vieira da Silva & Nilton Antonio Diniz Netto & Jeanine Costa Santos & Augusto Cesar Teixeira Malaquias & José Guilherme Coelho Baêta, 2022. "Development Procedure for Performance Estimation and Main Dimensions Calculation of a Highly-Boosted Ethanol Engine with Water Injection," Energies, MDPI, vol. 15(13), pages 1-24, June.
    14. Wu, Zhicong & Zhang, Ziyue & Xu, Gang & Ge, Shiyu & Xue, Xiaojun & Chen, Heng, 2024. "Thermodynamic and economic analysis of a new methanol synthesis system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 300(C).
    15. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio & Braglia, Roberto & Canini, Antonella, 2018. "Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield," Energy, Elsevier, vol. 161(C), pages 663-669.
    16. Chai, Maojie & Nourozieh, Hossein & Chen, Zhangxin & Yang, Min, 2022. "A semi-compositional approach to model asphaltene precipitation and deposition in solvent-based bitumen recovery processes," Applied Energy, Elsevier, vol. 328(C).
    17. Stefan Heidinger & Felix Spranger & Jakub Dostál & Chunliang Zhang & Christian Klaus, 2022. "Material Treatment in the Pulsation Reactor—From Flame Spray Pyrolysis to Industrial Scale," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    18. Laura Osma & Luis García & Romel Pérez & Carolina Barbosa & Jesús Botett & Jorge Sandoval & Eduardo Manrique, 2019. "Benefit–Cost and Energy Efficiency Index to Support the Screening of Hybrid Cyclic Steam Stimulation Methods," Energies, MDPI, vol. 12(24), pages 1-16, December.
    19. Mateus-Rubiano, Camilo & Castillo, Andrea C. & León, Paola & Rueda, Luis & Molina V, Daniel & Leon, Adan Y., 2024. "Effect of hydrotreatment process on the physicochemical properties of a Colombian heavy crude oil post-catalytic aquathermolysis," Energy, Elsevier, vol. 298(C).
    20. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.