IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3101-d562595.html
   My bibliography  Save this article

Analysis of Low-Power Boilers Work on Real Heat Loads: A Case of Poland

Author

Listed:
  • Bartosz Ciupek

    (Department of Fuels and Renewable Energy, Faculty of Environmental Engineering and Energy, Institute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Wojciech Judt

    (Department of Fuels and Renewable Energy, Faculty of Environmental Engineering and Energy, Institute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Karol Gołoś

    (Department of Fuels and Renewable Energy, Faculty of Environmental Engineering and Energy, Institute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Rafał Urbaniak

    (BRAGER Ltd., 63-300 Pleszew, Poland)

Abstract

The paper presents the methods of determination of the actual operation of solid fuel heating boilers in Poland. The analysis was based on an average annual distribution of the actual power outputs of the solid fuel heating boilers operated in four selected locations in Poland. Based on said data, three characteristic percent shares have been estimated of the nominal power outputs, at which the heating boilers in Poland operate throughout the year (divided into four characteristic portions—the seasons of the year). Additionally, for the analysis, the authors took into account the average annual temperature amplitude and the annual air quality information for the discussed locations and analyzed 30 solid fuel heating boilers in terms of their performance in the laboratory certification tests. In the final stage of the investigations, the authors initiated laboratory tests on the application of the combustion quality analyzers and their potential benefits.

Suggested Citation

  • Bartosz Ciupek & Wojciech Judt & Karol Gołoś & Rafał Urbaniak, 2021. "Analysis of Low-Power Boilers Work on Real Heat Loads: A Case of Poland," Energies, MDPI, vol. 14(11), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3101-:d:562595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wojciech Judt, 2020. "Numerical and Experimental Analysis of Heat Transfer for Solid Fuels Combustion in Fixed Bed Conditions," Energies, MDPI, vol. 13(22), pages 1-18, November.
    2. Yujian Ye & Dawei Qiu & Huiyu Wang & Yi Tang & Goran Strbac, 2021. "Real-Time Autonomous Residential Demand Response Management Based on Twin Delayed Deep Deterministic Policy Gradient Learning," Energies, MDPI, vol. 14(3), pages 1-22, January.
    3. Beata Kurc & Piotr Lijewski & Łukasz Rymaniak & Paweł Fuć & Marita Pigłowska & Rafał Urbaniak & Bartosz Ciupek, 2020. "High-Energy Solid Fuel Obtained from Carbonized Rice Starch," Energies, MDPI, vol. 13(16), pages 1-18, August.
    4. Kazakevicius, Eduardas & Schipper, Lee & Meyers, Stephen, 1998. "The residential space heating problem in Lithuania," Energy Policy, Elsevier, vol. 26(11), pages 831-858, September.
    5. Barma, M.C. & Saidur, R. & Rahman, S.M.A. & Allouhi, A. & Akash, B.A. & Sait, Sadiq M., 2017. "A review on boilers energy use, energy savings, and emissions reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 970-983.
    6. Chanuk Lee & Dong Eun Jung & Donghoon Lee & Kee Han Kim & Sung Lok Do, 2021. "Prediction Performance Analysis of Artificial Neural Network Model by Input Variable Combination for Residential Heating Loads," Energies, MDPI, vol. 14(3), pages 1-19, February.
    7. Jaworek, A. & Sobczyk, A.T. & Marchewicz, A. & Krupa, A. & Czech, T., 2021. "Particulate matter emission control from small residential boilers after biomass combustion. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Kraszkiewicz & Artur Przywara & Stanisław Parafiniuk, 2022. "Emission of Nitric Oxide during the Combustion of Various Forms of Solid Biofuels in a Low-Power Heating Device," Energies, MDPI, vol. 15(16), pages 1-19, August.
    2. Bartosz Ciupek & Karol Gołoś & Radosław Jankowski & Zbigniew Nadolny, 2021. "Effect of Hard Coal Combustion in Water Steam Environment on Chemical Composition of Exhaust Gases," Energies, MDPI, vol. 14(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magda Joachimiak, 2021. "Analysis of Thermodynamic Parameter Variability in a Chamber of a Furnace for Thermo-Chemical Treatment," Energies, MDPI, vol. 14(10), pages 1-18, May.
    2. Bartosz Ciupek & Karol Gołoś & Radosław Jankowski & Zbigniew Nadolny, 2021. "Effect of Hard Coal Combustion in Water Steam Environment on Chemical Composition of Exhaust Gases," Energies, MDPI, vol. 14(20), pages 1-24, October.
    3. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    4. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    5. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    6. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    8. Joanna Szyszlak-Bargłowicz & Jacek Wasilewski & Grzegorz Zając & Andrzej Kuranc & Adam Koniuszy & Małgorzata Hawrot-Paw, 2022. "Evaluation of Particulate Matter (PM) Emissions from Combustion of Selected Types of Rapeseed Biofuels," Energies, MDPI, vol. 16(1), pages 1-15, December.
    9. Shan, Shiquan & Tian, Jialu & Chen, Binghong & Zhang, Yanwei & Zhou, Zhijun, 2023. "Theoretical and technical analysis of the photo-thermal energy cascade conversion for fuel with high-temperature combustion," Energy, Elsevier, vol. 263(PD).
    10. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    11. Davide Deltetto & Davide Coraci & Giuseppe Pinto & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings," Energies, MDPI, vol. 14(10), pages 1-25, May.
    12. Herc, Luka & Pfeifer, Antun & Duić, Neven, 2022. "Optimization of the possible pathways for gradual energy system decarbonization," Renewable Energy, Elsevier, vol. 193(C), pages 617-633.
    13. Ding, Haixu & Tang, Jian & Qiao, Junfei, 2023. "Dynamic modeling of multi-input and multi-output controlled object for municipal solid waste incineration process," Applied Energy, Elsevier, vol. 339(C).
    14. Li, Yong & Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Han, Wei, 2018. "Modeling for the performance evaluation of 600 MW supercritical unit operating No.0 high pressure heater," Energy, Elsevier, vol. 149(C), pages 639-661.
    15. Piotr Ziembicki & Joachim Kozioł & Jan Bernasiński & Ireneusz Nowogoński, 2019. "Innovative System for Heat Recovery and Combustion Gas Cleaning," Energies, MDPI, vol. 12(22), pages 1-13, November.
    16. Xiao, Guolin & Gao, Xiaori & Lu, Wei & Liu, Xiaodong & Asghar, Aamer Bilal & Jiang, Liu & Jing, Wenlin, 2023. "A physically based air proportioning methodology for optimized combustion in gas-fired boilers considering both heat release and NOx emissions," Applied Energy, Elsevier, vol. 350(C).
    17. Natalia Cid & Juan Jesús Rico & Raquel Pérez-Orozco & Ana Larrañaga, 2021. "Experimental Study of the Performance of a Laboratory-Scale ESP with Biomass Combustion: Discharge Electrode Disposition, Dynamic Control Unit and Aging Effect," Sustainability, MDPI, vol. 13(18), pages 1-12, September.
    18. Álvaro Gutiérrez, 2022. "Optimization Trends in Demand-Side Management," Energies, MDPI, vol. 15(16), pages 1-3, August.
    19. Judt, W. & Ciupek, B. & Urbaniak, R., 2020. "Numerical study of a heat transfer process in a low power heating boiler equipped with afterburning chamber," Energy, Elsevier, vol. 196(C).
    20. Xie, Jiahan & Ajagekar, Akshay & You, Fengqi, 2023. "Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3101-:d:562595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.