IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6507-d653510.html
   My bibliography  Save this article

Energy Management Scheduling for Microgrids in the Virtual Power Plant System Using Artificial Neural Networks

Author

Listed:
  • Maher G. M. Abdolrasol

    (Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Mahammad Abdul Hannan

    (Department of Electrical Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

  • S. M. Suhail Hussain

    (Fukushima Renewable Energy Institute, AIST (FREA), National Institute of Advanced Industrial Science and Technology (AIST), Koriyama 963-0298, Japan)

  • Taha Selim Ustun

    (Fukushima Renewable Energy Institute, AIST (FREA), National Institute of Advanced Industrial Science and Technology (AIST), Koriyama 963-0298, Japan)

  • Mahidur R. Sarker

    (Institute of IR 4.0, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Pin Jern Ker

    (Department of Electrical Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

Abstract

This study uses an artificial neural network (ANN) as an intelligent controller for the management and scheduling of a number of microgrids (MGs) in virtual power plants (VPP). Two ANN-based scheduling control approaches are presented: the ANN-based backtracking search algorithm (ANN-BBSA) and ANN-based binary practical swarm optimization (ANN-BPSO) algorithm. Both algorithms provide the optimal schedule for every distribution generation (DG) to limit fuel consumption, reduce CO2 emission, and increase the system efficiency towards smart and economic VPP operation as well as grid decarbonization. Different test scenarios are executed to evaluate the controllers’ robustness and performance under changing system conditions. The test cases are different load curves to evaluate the ANN’s performance on untrained data. The untrained and trained load models used are real-load parameter data recorders in northern parts of Malaysia. The test results are analyzed to investigate the performance of these controllers under varying power system conditions. Additionally, a comparative study is performed to compare their performances with other solutions available in the literature based on several parameters. Results show the superiority of the ANN-based controllers in terms of cost reduction and efficiency.

Suggested Citation

  • Maher G. M. Abdolrasol & Mahammad Abdul Hannan & S. M. Suhail Hussain & Taha Selim Ustun & Mahidur R. Sarker & Pin Jern Ker, 2021. "Energy Management Scheduling for Microgrids in the Virtual Power Plant System Using Artificial Neural Networks," Energies, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6507-:d:653510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6507/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6507/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiqi Li & Jing Zhang & Zhoujun Ma & Yang Peng & Shuwen Zhao, 2021. "An Energy Management Optimization Method for Community Integrated Energy System Based on User Dominated Demand Side Response," Energies, MDPI, vol. 14(15), pages 1-22, July.
    2. Partha Pratim Dey & Dulal Chandra Das & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Active Power Management of Virtual Power Plant under Penetration of Central Receiver Solar Thermal-Wind Using Butterfly Optimization Technique," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    3. Roslan, M.F. & Hannan, M.A. & Jern Ker, Pin & Begum, R.A. & Indra Mahlia, TM & Dong, Z.Y., 2021. "Scheduling controller for microgrids energy management system using optimization algorithm in achieving cost saving and emission reduction," Applied Energy, Elsevier, vol. 292(C).
    4. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    5. S. Hr. Aghay Kaboli & Amer Al Hinai & A.H. Al-Badi & Yassine Charabi & Abdulrahim Al Saifi, 2019. "Prediction of Metallic Conductor Voltage Owing to Electromagnetic Coupling Via a Hybrid ANFIS and Backtracking Search Algorithm," Energies, MDPI, vol. 12(19), pages 1-18, September.
    6. Mojtaba Ahmadieh Khanesar & Jingyi Lu & Thomas Smith & David Branson, 2021. "Electrical Load Prediction Using Interval Type-2 Atanassov Intuitionist Fuzzy System: Gravitational Search Algorithm Tuning Approach," Energies, MDPI, vol. 14(12), pages 1-18, June.
    7. Anurag Chauhan & Subho Upadhyay & Mohd. Tauseef Khan & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Performance Investigation of a Solar Photovoltaic/Diesel Generator Based Hybrid System with Cycle Charging Strategy Using BBO Algorithm," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    8. Xiaoyu Lin & Hang Yu & Meng Wang & Chaoen Li & Zi Wang & Yin Tang, 2021. "Electricity Consumption Forecast of High-Rise Office Buildings Based on the Long Short-Term Memory Method," Energies, MDPI, vol. 14(16), pages 1-21, August.
    9. Duarte Kazacos Winter & Rahul Khatri & Michael Schmidt, 2021. "Decentralized Prosumer-Centric P2P Electricity Market Coordination with Grid Security," Energies, MDPI, vol. 14(15), pages 1-17, August.
    10. Aiman J. Albarakati & Younes Boujoudar & Mohamed Azeroual & Reda Jabeur & Ayman Aljarbouh & Hassan El Moussaoui & Tijani Lamhamdi & Najat Ouaaline, 2021. "Real-Time Energy Management for DC Microgrids Using Artificial Intelligence," Energies, MDPI, vol. 14(17), pages 1-16, August.
    11. Shishir Gaur & Sudheer Ch & Didier Graillot & B. Chahar & D. Kumar, 2013. "Application of Artificial Neural Networks and Particle Swarm Optimization for the Management of Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 927-941, February.
    12. Izabela Zoltowska & Jeremy Lin, 2021. "Optimal Charging Schedule Planning for Electric Buses Using Aggregated Day-Ahead Auction Bids," Energies, MDPI, vol. 14(16), pages 1-18, August.
    13. Amar Kumar Barik & Dulal Chandra Das & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Optimal Voltage–Frequency Regulation in Distributed Sustainable Energy-Based Hybrid Microgrids with Integrated Resource Planning," Energies, MDPI, vol. 14(10), pages 1-26, May.
    14. Po-Chen Cheng & Bo-Rei Peng & Yi-Hua Liu & Yu-Shan Cheng & Jia-Wei Huang, 2015. "Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique," Energies, MDPI, vol. 8(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonia García-Moreno & Víctor-Raúl López-Ruiz, 2023. "A Review of the Energy Sector as a Key Factor in Industry 4.0: The Case of Spain," Energies, MDPI, vol. 16(11), pages 1-17, May.
    2. Arul Rajagopalan & Karthik Nagarajan & Oscar Danilo Montoya & Seshathiri Dhanasekaran & Inayathullah Abdul Kareem & Angalaeswari Sendraya Perumal & Natrayan Lakshmaiya & Prabhu Paramasivam, 2022. "Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer," Energies, MDPI, vol. 15(23), pages 1-24, November.
    3. Harpreet Sharma & Sachin Mishra & Javed Dhillon & Naveen Kumar Sharma & Mohit Bajaj & Rizwan Tariq & Ateeq Ur Rehman & Muhammad Shafiq & Habib Hamam, 2022. "Feasibility of Solar Grid-Based Industrial Virtual Power Plant for Optimal Energy Scheduling: A Case of Indian Power Sector," Energies, MDPI, vol. 15(3), pages 1-21, January.
    4. Ziad M. Ali & Martin Calasan & Shady H. E. Abdel Aleem & Francisco Jurado & Foad H. Gandoman, 2023. "Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review," Energies, MDPI, vol. 16(16), pages 1-41, August.
    5. Taha Selim Ustun, 2022. "Power Systems Imitate Nature for Improved Performance Use of Nature-Inspired Optimization Techniques," Energies, MDPI, vol. 15(17), pages 1-2, August.
    6. Preeti Ranjan Sahu & Rajesh Kumar Lenka & Rajendra Kumar Khadanga & Prakash Kumar Hota & Sidhartha Panda & Taha Selim Ustun, 2022. "Power System Stability Improvement of FACTS Controller and PSS Design: A Time-Delay Approach," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    7. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.
    8. Sheikh Safiullah & Asadur Rahman & Shameem Ahmad Lone & S. M. Suhail Hussain & Taha Selim Ustun, 2022. "Novel COVID-19 Based Optimization Algorithm (C-19BOA) for Performance Improvement of Power Systems," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    9. Upasana Lakhina & Irraivan Elamvazuthi & Nasreen Badruddin & Ajay Jangra & Bao-Huy Truong & Joseph M. Guerrero, 2023. "A Cost-Effective Multi-Verse Optimization Algorithm for Efficient Power Generation in a Microgrid," Sustainability, MDPI, vol. 15(8), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Preeti Ranjan Sahu & Rajesh Kumar Lenka & Rajendra Kumar Khadanga & Prakash Kumar Hota & Sidhartha Panda & Taha Selim Ustun, 2022. "Power System Stability Improvement of FACTS Controller and PSS Design: A Time-Delay Approach," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    2. Smruti Ranjan Nayak & Rajendra Kumar Khadanga & Sidhartha Panda & Preeti Ranjan Sahu & Sasmita Padhy & Taha Selim Ustun, 2023. "Participation of Renewable Energy Sources in the Frequency Regulation Issues of a Five-Area Hybrid Power System Utilizing a Sine Cosine-Adopted African Vulture Optimization Algorithm," Energies, MDPI, vol. 16(2), pages 1-21, January.
    3. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    4. Sheikh Safiullah & Asadur Rahman & Shameem Ahmad Lone & S. M. Suhail Hussain & Taha Selim Ustun, 2022. "Novel COVID-19 Based Optimization Algorithm (C-19BOA) for Performance Improvement of Power Systems," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    5. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.
    6. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2023. "System Economy Improvement and Risk Shortening by Fuel Cell-UPFC Placement in a Wind-Combined System," Energies, MDPI, vol. 16(4), pages 1-30, February.
    7. Taha Selim Ustun, 2023. "Microgrids Imitate Nature for Improved Performance— Use of Nature-Inspired Optimization Techniques in Future Power Systems," Energies, MDPI, vol. 16(3), pages 1-15, February.
    8. Sudhanshu Ranjan & Smriti Jaiswal & Abdul Latif & Dulal Chandra Das & Nidul Sinha & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Isolated and Interconnected Multi-Area Hybrid Power Systems: A Review on Control Strategies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    9. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    10. Saif Jamal & Jagadeesh Pasupuleti & Nur Azzammudin Rahmat & Nadia M. L. Tan, 2022. "Energy Management System for Grid-Connected Nanogrid during COVID-19," Energies, MDPI, vol. 15(20), pages 1-20, October.
    11. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    12. Zhang, Weiping & Maleki, Akbar, 2022. "Modeling and optimization of a stand-alone desalination plant powered by solar/wind energies based on back-up systems using a hybrid algorithm," Energy, Elsevier, vol. 254(PC).
    13. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    14. Diego Mendoza Osorio & Javier Rosero Garcia, 2023. "Convex Stochastic Approaches for the Optimal Allocation of Distributed Energy Resources in AC Distribution Networks with Measurements Fitted to a Continuous Probability Distribution Function," Energies, MDPI, vol. 16(14), pages 1-27, July.
    15. Yang, Yuyan & Xu, Xiao & Pan, Li & Liu, Junyong & Liu, Jichun & Hu, Weihao, 2024. "Distributed prosumer trading in the electricity and carbon markets considering user utility," Renewable Energy, Elsevier, vol. 228(C).
    16. Mohsen Ahmadi & Mahsa Soofiabadi & Maryam Nikpour & Hossein Naderi & Lazim Abdullah & Behdad Arandian, 2022. "Developing a Deep Neural Network with Fuzzy Wavelets and Integrating an Inline PSO to Predict Energy Consumption Patterns in Urban Buildings," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    17. Omar Jouma El-Hafez & Tarek Y. ElMekkawy & Mohamed Kharbeche & Ahmed Massoud, 2022. "Impact of COVID-19 Pandemic on Qatar Electricity Demand and Load Forecasting: Preparedness of Distribution Networks for Emerging Situations," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    18. Shreya Shree Das & Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    19. Kandasamy, Jeevitha & Ramachandran, Rajeswari & Veerasamy, Veerapandiyan & Irudayaraj, Andrew Xavier Raj, 2024. "Distributed leader-follower based adaptive consensus control for networked microgrids," Applied Energy, Elsevier, vol. 353(PA).
    20. Taha Selim Ustun, 2022. "Power Systems Imitate Nature for Improved Performance Use of Nature-Inspired Optimization Techniques," Energies, MDPI, vol. 15(17), pages 1-2, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6507-:d:653510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.