IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v228y2024ics0960148124007377.html
   My bibliography  Save this article

Distributed prosumer trading in the electricity and carbon markets considering user utility

Author

Listed:
  • Yang, Yuyan
  • Xu, Xiao
  • Pan, Li
  • Liu, Junyong
  • Liu, Jichun
  • Hu, Weihao

Abstract

With the promotion of distributed energy trading and the transformation of power system operation mode, prosumers in the carbon and electricity markets face new opportunities and challenges. This paper proposes a peer-to-peer transaction platform to promote renewable energy consumption and carbon emission reduction, including multiple types of loads, coal-fired units, and microgrid prosumers. The carbon-emitting members of power generation and demand sides in the electricity market are introduced into the carbon market, and their carbon cost model is established. To guide consumption behavior of demand side, the user utility model based on electricity consumption is built to reduce carbon emissions. With the goal of optimizing the generation cost, user utility, and network fees, the distributed optimal scheduling model is established to recover the network fees. Finally, the alternating direction method of multipliers is used to solve this problem and protect transaction privacy. The results indicate that introducing carbon trading at the power generation and demand sides can promote the shift of members' production behavior from high-carbon emission industries to low-carbon ones. Additionally, an appropriate network fee mechanism and unit fee can guide market members to adjust their trading behavior adaptively and help the power grid recover costs.

Suggested Citation

  • Yang, Yuyan & Xu, Xiao & Pan, Li & Liu, Junyong & Liu, Jichun & Hu, Weihao, 2024. "Distributed prosumer trading in the electricity and carbon markets considering user utility," Renewable Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007377
    DOI: 10.1016/j.renene.2024.120669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124007377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Shuang & Zhao, Yong & Li, Yuanzheng & Zhou, Yue, 2021. "An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid," Applied Energy, Elsevier, vol. 298(C).
    2. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    3. Duarte Kazacos Winter & Rahul Khatri & Michael Schmidt, 2021. "Decentralized Prosumer-Centric P2P Electricity Market Coordination with Grid Security," Energies, MDPI, vol. 14(15), pages 1-17, August.
    4. Zhao, Bingxu & Duan, Pengfei & Fen, Mengdan & Xue, Qingwen & Hua, Jing & Yang, Zhuoqiang, 2023. "Optimal operation of distribution networks and multiple community energy prosumers based on mixed game theory," Energy, Elsevier, vol. 278(PB).
    5. van Zoest, Vera & El Gohary, Fouad & Ngai, Edith C.H. & Bartusch, Cajsa, 2021. "Demand charges and user flexibility – Exploring differences in electricity consumer types and load patterns within the Swedish commercial sector," Applied Energy, Elsevier, vol. 302(C).
    6. Neves, Diana & Scott, Ian & Silva, Carlos A., 2020. "Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities," Energy, Elsevier, vol. 205(C).
    7. Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie, 2020. "A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System," Applied Energy, Elsevier, vol. 260(C).
    8. Abdulaal, Ahmed & Moghaddass, Ramin & Asfour, Shihab, 2017. "Two-stage discrete-continuous multi-objective load optimization: An industrial consumer utility approach to demand response," Applied Energy, Elsevier, vol. 206(C), pages 206-221.
    9. Yongxiu He & Meiyan Wang & Jinxiong Yu & Qing He & Huijun Sun & Fengyu Su, 2020. "Research on the Hybrid Recommendation Method of Retail Electricity Price Package Based on Power User Characteristics and Multi-Attribute Utility in China," Energies, MDPI, vol. 13(11), pages 1-18, May.
    10. Grein, Arne & Pehnt, Martin, 2011. "Load management for refrigeration systems: Potentials and barriers," Energy Policy, Elsevier, vol. 39(9), pages 5598-5608, September.
    11. Wu, Qiong & Xie, Zhun & Ren, Hongbo & Li, Qifen & Yang, Yongwen, 2022. "Optimal trading strategies for multi-energy microgrid cluster considering demand response under different trading modes: A comparison study," Energy, Elsevier, vol. 254(PC).
    12. Maneesha, Ampolu & Swarup, K. Shanti, 2021. "A survey on applications of Alternating Direction Method of Multipliers in smart power grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    14. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    15. Kühnbach, Matthias & Bekk, Anke & Weidlich, Anke, 2022. "Towards improved prosumer participation: Electricity trading in local markets," Energy, Elsevier, vol. 239(PE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    3. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    4. Félix González & Paul Arévalo & Luis Ramirez, 2025. "Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    5. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    6. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers," Energy, Elsevier, vol. 244(PA).
    7. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    8. Lin, Wen-Ting & Chen, Guo & Zhou, Xiaojun, 2022. "Distributed carbon-aware energy trading of virtual power plant under denial of service attacks: A passivity-based neurodynamic approach," Energy, Elsevier, vol. 257(C).
    9. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," Applied Energy, Elsevier, vol. 278(C).
    10. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    11. Ambrosius, Mirjam & Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2018. "Investment incentives for flexible demand options under different market designs," Energy Policy, Elsevier, vol. 118(C), pages 372-389.
    12. Fatras, Nicolas & Ma, Zheng & Jørgensen, Bo Nørregaard, 2022. "Process-to-market matrix mapping: A multi-criteria evaluation framework for industrial processes’ electricity market participation feasibility," Applied Energy, Elsevier, vol. 313(C).
    13. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    14. Olsthoorn, Mark & Schleich, Joachim & Klobasa, Marian, 2015. "Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective," Energy Policy, Elsevier, vol. 76(C), pages 32-42.
    15. Lopez, Hector K. & Zilouchian, Ali, 2023. "Peer-to-peer energy trading for photo-voltaic prosumers," Energy, Elsevier, vol. 263(PA).
    16. Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie & Jiang, Qian & Wang, Xiaoyu, 2021. "Peer-to-Peer energy trading strategy for energy balance service provider (EBSP) considering market elasticity in community microgrid," Applied Energy, Elsevier, vol. 303(C).
    17. Zhang, Bidan & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Jiang, Lin & Yan, Ke, 2022. "A novel adaptive penalty mechanism for Peer-to-Peer energy trading," Applied Energy, Elsevier, vol. 327(C).
    18. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    19. Wang, Yifeng & Jiang, Aihua & Wang, Rui & Tian, Junyang, 2024. "A canonical coalitional game model incorporating motivational psychology analysis for incentivizing stable direct energy trading in smart grid," Energy, Elsevier, vol. 289(C).
    20. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.