IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9024-d987495.html
   My bibliography  Save this article

Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer

Author

Listed:
  • Arul Rajagopalan

    (School of Electrical Engineering, Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India)

  • Karthik Nagarajan

    (Department of Electrical & Electronics Engineering, Hindustan Institute of Technology & Science, Chennai 601301, Tamil Nadu, India)

  • Oscar Danilo Montoya

    (Grupo de Compatibilidad e Interferencia Electromágnetica, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
    Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

  • Seshathiri Dhanasekaran

    (Department of Computer Science, UiT The Arctic University of Norway, 9037 Tromsø, Norway)

  • Inayathullah Abdul Kareem

    (School of Electrical Engineering, Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India)

  • Angalaeswari Sendraya Perumal

    (School of Electrical Engineering, Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India)

  • Natrayan Lakshmaiya

    (Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai 602107, Tamilnadu, India)

  • Prabhu Paramasivam

    (Department of Mechanical Engineering, College of Engineering and Technology, Mattu University, Mettu 318, Ethiopia)

Abstract

Optimal energy management has become a challenging task to accomplish in today’s advanced energy systems. If energy is managed in the most optimal manner, tremendous societal benefits can be achieved such as improved economy and less environmental pollution. It is possible to operate the microgrids under grid-connected, as well as isolated modes. The authors presented a new optimization algorithm, i.e., Oppositional Gradient-based Grey Wolf Optimizer (OGGWO) in the current study to elucidate the optimal operation in microgrids that is loaded with sustainable, as well as unsustainable energy sources. With the integration of non-Renewable Energy Sources (RES) with microgrids, environmental pollution is reduced. The current study proposes this hybrid algorithm to avoid stagnation and achieve premature convergence. Having been strategized as a bi-objective optimization problem, the ultimate aim of this model’s optimal operation is to cut the costs incurred upon operations and reduce the emission of pollutants in a 24-h scheduling period. In the current study, the authors considered a Micro Turbine (MT) followed by a Wind Turbine (WT), a battery unit and a Fuel Cell (FC) as storage devices. The microgrid was assumed under the grid-connected mode. The authors validated the proposed algorithm upon three different scenarios to establish the former’s efficiency and efficacy. In addition to these, the optimization results attained from the proposed technique were also compared with that of the results from techniques implemented earlier. According to the outcomes, it can be inferred that the presented OGGWO approach outperformed other methods in terms of cost mitigation and pollution reduction.

Suggested Citation

  • Arul Rajagopalan & Karthik Nagarajan & Oscar Danilo Montoya & Seshathiri Dhanasekaran & Inayathullah Abdul Kareem & Angalaeswari Sendraya Perumal & Natrayan Lakshmaiya & Prabhu Paramasivam, 2022. "Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer," Energies, MDPI, vol. 15(23), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9024-:d:987495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Ying & Yang, Hanqing & Li, Qi & Chen, Weirong & Zare, Firuz & Guerrero, Josep M., 2020. "Mode-triggered droop method for the decentralized energy management of an islanded hybrid PV/hydrogen/battery DC microgrid," Energy, Elsevier, vol. 199(C).
    2. Sarshar, Javad & Moosapour, Seyyed Sajjad & Joorabian, Mahmood, 2017. "Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting," Energy, Elsevier, vol. 139(C), pages 680-693.
    3. Kafetzis, A. & Ziogou, C. & Panopoulos, K.D. & Papadopoulou, S. & Seferlis, P. & Voutetakis, S., 2020. "Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Tabar, Vahid Sohrabi & Jirdehi, Mehdi Ahmadi & Hemmati, Reza, 2017. "Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option," Energy, Elsevier, vol. 118(C), pages 827-839.
    5. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.
    6. Yehia Gad & Hatem Diab & Mahmoud Abdelsalam & Yasser Galal, 2020. "Smart Energy Management System of Environmentally Friendly Microgrid Based on Grasshopper Optimization Technique," Energies, MDPI, vol. 13(19), pages 1-22, September.
    7. Maher G. M. Abdolrasol & Mahammad Abdul Hannan & S. M. Suhail Hussain & Taha Selim Ustun & Mahidur R. Sarker & Pin Jern Ker, 2021. "Energy Management Scheduling for Microgrids in the Virtual Power Plant System Using Artificial Neural Networks," Energies, MDPI, vol. 14(20), pages 1-19, October.
    8. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arun S. Loganathan & Vijayapriya Ramachandran & Angalaeswari Sendraya Perumal & Seshathiri Dhanasekaran & Natrayan Lakshmaiya & Prabhu Paramasivam, 2022. "Framework of Transactive Energy Market Strategies for Lucrative Peer-to-Peer Energy Transactions," Energies, MDPI, vol. 16(1), pages 1-16, December.
    2. Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Brandon Cortés-Caicedo & Jhon Montano & Andrés Alfonso Rosales-Muñoz & Marco Rivera, 2022. "Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    3. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    4. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    5. Ana Lagos & Joaquín E. Caicedo & Gustavo Coria & Andrés Romero Quete & Maximiliano Martínez & Gastón Suvire & Jesús Riquelme, 2022. "State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems," Energies, MDPI, vol. 15(18), pages 1-40, September.
    6. Mehdi Ahmadi Jirdehi & Mohammad Shaterabadi, 2021. "A low‐carbon strategy using INVELOX turbines in the presence of real‐time energy price uncertainty," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 461-482, June.
    7. Ahmad Alzahrani & Ghulam Hafeez & Sajjad Ali & Sadia Murawwat & Muhammad Iftikhar Khan & Khalid Rehman & Azher M. Abed, 2023. "Multi-Objective Energy Optimization with Load and Distributed Energy Source Scheduling in the Smart Power Grid," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    8. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    9. Luis Santiago Azuara-Grande & Santiago Arnaltes & Jaime Alonso-Martinez & Jose Luis Rodriguez-Amenedo, 2021. "Comparison of Two Energy Management System Strategies for Real-Time Operation of Isolated Hybrid Microgrids," Energies, MDPI, vol. 14(20), pages 1-15, October.
    10. Mughees, Neelam & Jaffery, Mujtaba Hussain & Mughees, Anam & Ansari, Ejaz Ahmad & Mughees, Abdullah, 2023. "Reinforcement learning-based composite differential evolution for integrated demand response scheme in industrial microgrids," Applied Energy, Elsevier, vol. 342(C).
    11. Preeti Ranjan Sahu & Rajesh Kumar Lenka & Rajendra Kumar Khadanga & Prakash Kumar Hota & Sidhartha Panda & Taha Selim Ustun, 2022. "Power System Stability Improvement of FACTS Controller and PSS Design: A Time-Delay Approach," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    12. Sulaiman A. Almohaimeed & Siddharth Suryanarayanan & Peter O’Neill, 2021. "Simulation Studies to Quantify the Impact of Demand Side Management on Environmental Footprint," Sustainability, MDPI, vol. 13(17), pages 1-24, August.
    13. Jingjing Zhai & Xiaobei Wu & Zihao Li & Shaojie Zhu & Bo Yang & Haoming Liu, 2021. "Day-Ahead and Intra-Day Collaborative Optimized Operation among Multiple Energy Stations," Energies, MDPI, vol. 14(4), pages 1-33, February.
    14. Jani, Ali & Karimi, Hamid & Jadid, Shahram, 2022. "Two-layer stochastic day-ahead and real-time energy management of networked microgrids considering integration of renewable energy resources," Applied Energy, Elsevier, vol. 323(C).
    15. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    16. Zeyue Sun & Mohsen Eskandari & Chaoran Zheng & Ming Li, 2022. "Handling Computation Hardness and Time Complexity Issue of Battery Energy Storage Scheduling in Microgrids by Deep Reinforcement Learning," Energies, MDPI, vol. 16(1), pages 1-20, December.
    17. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    18. Xuejun Zheng & Shaorong Wang & Xin Su & Mengmeng Xiao & Zia Ullah & Xin Hu & Chang Ye, 2021. "Real-Time Dynamic Behavior Evaluation of Active Distribution Networks Leveraging Low-Cost PMUs," Energies, MDPI, vol. 14(16), pages 1-20, August.
    19. Magda I. El-Afifi & Magdi M. Saadawi & Abdelfattah A. Eladl, 2022. "Cogeneration Systems Performance Analysis as a Sustainable Clean Energy and Water Source Based on Energy Hubs Using the Archimedes Optimization Algorithm," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    20. Gabriella Ferruzzi & Giorgio Graditi & Federico Rossi, 2020. "A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets," Energy & Environment, , vol. 31(1), pages 88-115, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9024-:d:987495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.