IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1522-d1057036.html
   My bibliography  Save this article

Microgrids Imitate Nature for Improved Performance— Use of Nature-Inspired Optimization Techniques in Future Power Systems

Author

Listed:
  • Taha Selim Ustun

    (Fukushima Renewable Energy Institute, AIST (FREA), Koriyama 963-0215, Japan)

Abstract

There is a constant push towards increasing use of renewable energy-based distributed generators around the globe. While they provide a clean and sustainable source of energy, they employ technologies that are unknown to traditional power systems. These generators are interfaced via inverters that lack the inertia of large synchronous machines. This manifests itself as a more volatile frequency profile that is susceptible to disturbances. This phenomenon is more amplified in stand-alone microgrids which are utilized as a popular electrification alternative in isolated or underserved communities. One solution approach takes its inspiration from nature, e.g., behavior of bees, butterflies, or ants. When employed in a suitable way, animals’ natural behavior helps optimize interaction between different renewable-energy based generators and create a more stable microgrid. There are different approaches to stabilizing such systems with novel optimization approaches. Some of them optimize the ratio between generators that utilize rotating machines and inverters. Penetration of renewable energy generation is about increasing the share of inverter-interfaced generators in the system without causing stability issues. Since renewable energy resources are intermittent and not dispatchable, it is important to create a diverse portfolio where the overall system achieves some stability. For instance, if a local grid is fed by PV panels, wind generation and a small-scale hydroelectric power plant, the varying nature of these resources may complement each other. On a sunny day, PV output might be very high, and wind may not be so significant. On the other hand, on a rainy day, clouds may reduce PV output while precipitation may feed the local hydro power plant. Similarly, wind generation might complement others on a windy day. While the idea is easy to comprehend qualitatively, finding the correct ratio is not trivial. Furthermore, there are many factors at play that are independently changing and impacting the outcome. For different sites, the available renewable energy resources, their profiles as well as the local load conditions would be different. Therefore, a systematic approach is required to optimize these systems at planning, operation and control levels. Nature-inspired optimization algorithms seem to have an edge in doing just that.

Suggested Citation

  • Taha Selim Ustun, 2023. "Microgrids Imitate Nature for Improved Performance— Use of Nature-Inspired Optimization Techniques in Future Power Systems," Energies, MDPI, vol. 16(3), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1522-:d:1057036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Latif, Abdul & Hussain, S. M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2021. "Double stage controller optimization for load frequency stabilization in hybrid wind-ocean wave energy based maritime microgrid system," Applied Energy, Elsevier, vol. 282(PA).
    2. Zahid Farooq & Asadur Rahman & S. M. Suhail Hussain & Taha Selim Ustun, 2022. "Power Generation Control of Renewable Energy Based Hybrid Deregulated Power System," Energies, MDPI, vol. 15(2), pages 1-19, January.
    3. Partha Pratim Dey & Dulal Chandra Das & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Active Power Management of Virtual Power Plant under Penetration of Central Receiver Solar Thermal-Wind Using Butterfly Optimization Technique," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    4. Shakti Singh & Prachi Chauhan & Mohd Asim Aftab & Ikbal Ali & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Cost Optimization of a Stand-Alone Hybrid Energy System with Fuel Cell and PV," Energies, MDPI, vol. 13(5), pages 1-23, March.
    5. Amar Kumar Barik & Dulal Chandra Das & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Optimal Voltage–Frequency Regulation in Distributed Sustainable Energy-Based Hybrid Microgrids with Integrated Resource Planning," Energies, MDPI, vol. 14(10), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smruti Ranjan Nayak & Rajendra Kumar Khadanga & Sidhartha Panda & Preeti Ranjan Sahu & Sasmita Padhy & Taha Selim Ustun, 2023. "Participation of Renewable Energy Sources in the Frequency Regulation Issues of a Five-Area Hybrid Power System Utilizing a Sine Cosine-Adopted African Vulture Optimization Algorithm," Energies, MDPI, vol. 16(2), pages 1-21, January.
    2. Sheikh Safiullah & Asadur Rahman & Shameem Ahmad Lone & S. M. Suhail Hussain & Taha Selim Ustun, 2022. "Novel COVID-19 Based Optimization Algorithm (C-19BOA) for Performance Improvement of Power Systems," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    3. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.
    4. Preeti Ranjan Sahu & Rajesh Kumar Lenka & Rajendra Kumar Khadanga & Prakash Kumar Hota & Sidhartha Panda & Taha Selim Ustun, 2022. "Power System Stability Improvement of FACTS Controller and PSS Design: A Time-Delay Approach," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    5. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    6. Sudhanshu Ranjan & Smriti Jaiswal & Abdul Latif & Dulal Chandra Das & Nidul Sinha & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Isolated and Interconnected Multi-Area Hybrid Power Systems: A Review on Control Strategies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    7. Taha Selim Ustun, 2022. "Power Systems Imitate Nature for Improved Performance Use of Nature-Inspired Optimization Techniques," Energies, MDPI, vol. 15(17), pages 1-2, August.
    8. Khaled A. Mahafzah & Mohammad A. Obeidat & Ayman M. Mansour & Ali Q. Al-Shetwi & Taha Selim Ustun, 2022. "Artificial-Intelligence-Based Open-Circuit Fault Diagnosis in VSI-Fed PMSMs and a Novel Fault Recovery Method," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    9. Maher G. M. Abdolrasol & Mahammad Abdul Hannan & S. M. Suhail Hussain & Taha Selim Ustun & Mahidur R. Sarker & Pin Jern Ker, 2021. "Energy Management Scheduling for Microgrids in the Virtual Power Plant System Using Artificial Neural Networks," Energies, MDPI, vol. 14(20), pages 1-19, October.
    10. Anurag Chauhan & Subho Upadhyay & Mohd. Tauseef Khan & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Performance Investigation of a Solar Photovoltaic/Diesel Generator Based Hybrid System with Cycle Charging Strategy Using BBO Algorithm," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    11. Mahsa Dehghan Manshadi & Milad Mousavi & M. Soltani & Amir Mosavi & Levente Kovacs, 2022. "Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System," Energies, MDPI, vol. 15(24), pages 1-16, December.
    12. Manish Kumar Singla & Jyoti Gupta & Mohammed H. Alsharif & Abu Jahid, 2023. "Optimizing Integration of Fuel Cell Technology in Renewable Energy-Based Microgrids for Sustainable and Cost-Effective Energy," Energies, MDPI, vol. 16(11), pages 1-18, June.
    13. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    14. Mohsen Ahmadi & Mahsa Soofiabadi & Maryam Nikpour & Hossein Naderi & Lazim Abdullah & Behdad Arandian, 2022. "Developing a Deep Neural Network with Fuzzy Wavelets and Integrating an Inline PSO to Predict Energy Consumption Patterns in Urban Buildings," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    15. Shreya Shree Das & Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    16. Kandasamy, Jeevitha & Ramachandran, Rajeswari & Veerasamy, Veerapandiyan & Irudayaraj, Andrew Xavier Raj, 2024. "Distributed leader-follower based adaptive consensus control for networked microgrids," Applied Energy, Elsevier, vol. 353(PA).
    17. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    18. Fahad M. Almasoudi, 2023. "Enhancing Power Grid Resilience through Real-Time Fault Detection and Remediation Using Advanced Hybrid Machine Learning Models," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    19. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    20. Sanath Alahakoon & Rajib Baran Roy & Shantha Jayasinghe Arachchillage, 2023. "Optimizing Load Frequency Control in Standalone Marine Microgrids Using Meta-Heuristic Techniques," Energies, MDPI, vol. 16(13), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1522-:d:1057036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.