IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p752-d729456.html
   My bibliography  Save this article

Feasibility of Solar Grid-Based Industrial Virtual Power Plant for Optimal Energy Scheduling: A Case of Indian Power Sector

Author

Listed:
  • Harpreet Sharma

    (Punjab State Power Corporation Limited, Punjab 144001, India)

  • Sachin Mishra

    (School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara 144411, India)

  • Javed Dhillon

    (School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara 144411, India)

  • Naveen Kumar Sharma

    (Department of Electrical Engineering, I. K. Gujral Punjab Technical University, Jalandhar 144603, India)

  • Mohit Bajaj

    (Department of Electrical and Electronics Engineering, National Institute of Technology, Delhi 110040, India)

  • Rizwan Tariq

    (Department of Electrical Engineering, Universiti Kuala Lumpur-BMI (UniKL-BMI), Gombak 53100, Malaysia)

  • Ateeq Ur Rehman

    (Department of Electrical Engineering, Government College University, Lahore 54000, Pakistan)

  • Muhammad Shafiq

    (Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Korea)

  • Habib Hamam

    (Faculty of Engineering, Moncton University, Moncton, NB E1A3E9, Canada
    Spectrum of Knowledge Production and Skills Development, Sfax 3027, Tunisia
    Department of Electrical and Electronic Engineering Science, School of Electrical Engineering, University of Johannesburg, Johannesburg 2006, South Africa)

Abstract

The increased popularity of small-scale DER has replaced the well-established concept of conventional generating plants around the world. In the present energy scenario, a significant share of energy production now comes from the grid integrated DERs installed at various consumer premises. These DERs are being renewable-based generates only intermittent power, which in turn makes the scheduling of electrical dispatch a tough task. The Virtual Power Plant (VPP) is a potential solution to this challenge, which coordinates and aggregates the DERs generation into a single controllable profile. In this paper, a modified PSO-based multi-objective optimization is proposed for the VPP scheduling in distribution network applications such as energy cost minimization, peak shaving, and reliability improvement. For feasibility analysis of the VPP, a case study of state power utility is taken, which includes a 90 bus industrial feeder with grid integrated PVs as DER. The optimized results are computed in both grid-connected and autonomous mode reveal that the operating cost, peak demand, and EENS are declined by 31.70%, 23.59%, and 62.30% respectively. The overall results obtained are compared by the results obtained from other well-established optimization techniques and it is found that the proposed technique is comparatively more cost-effective than others.

Suggested Citation

  • Harpreet Sharma & Sachin Mishra & Javed Dhillon & Naveen Kumar Sharma & Mohit Bajaj & Rizwan Tariq & Ateeq Ur Rehman & Muhammad Shafiq & Habib Hamam, 2022. "Feasibility of Solar Grid-Based Industrial Virtual Power Plant for Optimal Energy Scheduling: A Case of Indian Power Sector," Energies, MDPI, vol. 15(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:752-:d:729456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gu, Chenghong & Yan, Xiaohe & Yan, Zhang & Li, Furong, 2017. "Dynamic pricing for responsive demand to increase distribution network efficiency," Applied Energy, Elsevier, vol. 205(C), pages 236-243.
    2. Frauke Oest & Malin Radtke & Marita Blank-Babazadeh & Stefanie Holly & Sebastian Lehnhoff, 2021. "Evaluation of Communication Infrastructures for Distributed Optimization of Virtual Power Plant Schedules," Energies, MDPI, vol. 14(5), pages 1-20, February.
    3. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    4. Cherrelle Eid & Paul Codani & Yannick Perez & Javier Reneses & Rudi Hakvoort, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Post-Print hal-01792419, HAL.
    5. Maher G. M. Abdolrasol & Mahammad Abdul Hannan & S. M. Suhail Hussain & Taha Selim Ustun & Mahidur R. Sarker & Pin Jern Ker, 2021. "Energy Management Scheduling for Microgrids in the Virtual Power Plant System Using Artificial Neural Networks," Energies, MDPI, vol. 14(20), pages 1-19, October.
    6. Dominika Kaczorowska & Jacek Rezmer & Michal Jasinski & Tomasz Sikorski & Vishnu Suresh & Zbigniew Leonowicz & Pawel Kostyla & Jaroslaw Szymanda & Przemyslaw Janik, 2020. "A Case Study on Battery Energy Storage System in a Virtual Power Plant: Defining Charging and Discharging Characteristics," Energies, MDPI, vol. 13(24), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Ahmadian & Kumaraswamy Ponnambalam & Ali Almansoori & Ali Elkamel, 2023. "Optimal Management of a Virtual Power Plant Consisting of Renewable Energy Resources and Electric Vehicles Using Mixed-Integer Linear Programming and Deep Learning," Energies, MDPI, vol. 16(2), pages 1-17, January.
    2. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    3. Bilal Masood & Song Guobing & Jamel Nebhen & Ateeq Ur Rehman & Muhammad Naveed Iqbal & Iftikhar Rasheed & Mohit Bajaj & Muhammad Shafiq & Habib Hamam, 2022. "Investigation and Field Measurements for Demand Side Management Control Technique of Smart Air Conditioners located at Residential, Commercial, and Industrial Sites," Energies, MDPI, vol. 15(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    2. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    3. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Cherrelle Eid & Rudi Hakvoort & Martin de Jong, 2016. "Global trends in the political economy of smart grids: A tailored perspective on 'smart' for grids in transition," WIDER Working Paper Series 022, World Institute for Development Economic Research (UNU-WIDER).
    5. Konstantinos Kotsalos & Ismael Miranda & Nuno Silva & Helder Leite, 2019. "A Horizon Optimization Control Framework for the Coordinated Operation of Multiple Distributed Energy Resources in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(6), pages 1-27, March.
    6. Pearson, Simon & Wellnitz, Sonja & Crespo del Granado, Pedro & Hashemipour, Naser, 2022. "The value of TSO-DSO coordination in re-dispatch with flexible decentralized energy sources: Insights for Germany in 2030," Applied Energy, Elsevier, vol. 326(C).
    7. Ajla Mehinovic & Matej Zajc & Nermin Suljanovic, 2023. "Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid," Energies, MDPI, vol. 16(2), pages 1-18, January.
    8. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    9. Patrick Sunday Onen & Geev Mokryani & Rana H. A. Zubo, 2022. "Planning of Multi-Vector Energy Systems with High Penetration of Renewable Energy Source: A Comprehensive Review," Energies, MDPI, vol. 15(15), pages 1-25, August.
    10. Joao C. Ferreira & Ana Lucia Martins, 2018. "Building a Community of Users for Open Market Energy," Energies, MDPI, vol. 11(9), pages 1-21, September.
    11. Haas, Christian & Kempa, Karol & Moslener, Ulf, 2023. "Dealing with deep uncertainty in the energy transition: What we can learn from the electricity and transportation sectors," Energy Policy, Elsevier, vol. 179(C).
    12. Jianfei Shen & Fengyun Li & Di Shi & Hongze Li & Xinhua Yu, 2018. "Factors Affecting the Economics of Distributed Natural Gas-Combined Cooling, Heating and Power Systems in China: A Systematic Analysis Based on the Integrated Decision Making Trial and Evaluation Labo," Energies, MDPI, vol. 11(9), pages 1-28, September.
    13. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    14. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    15. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    16. Mays, Jacob, 2021. "Missing incentives for flexibility in wholesale electricity markets," Energy Policy, Elsevier, vol. 149(C).
    17. Abdullah M. Alabdullatif & Enrico H. Gerding & Alvaro Perez-Diaz, 2020. "Market Design and Trading Strategies for Community Energy Markets with Storage and Renewable Supply," Energies, MDPI, vol. 13(4), pages 1-31, February.
    18. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    19. Tina, Giuseppe Marco & Aneli, Stefano & Gagliano, Antonio, 2022. "Technical and economic analysis of the provision of ancillary services through the flexibility of HVAC system in shopping centers," Energy, Elsevier, vol. 258(C).
    20. Tang, Hong & Wang, Shengwei, 2022. "Multi-level optimal dispatch strategy and profit-sharing mechanism for unlocking energy flexibilities of non-residential building clusters in electricity markets of multiple flexibility services," Renewable Energy, Elsevier, vol. 201(P1), pages 35-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:752-:d:729456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.