IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5005-d799161.html
   My bibliography  Save this article

A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market

Author

Listed:
  • Shreya Shree Das

    (Department of Electrical Engineering, Mizoram University, Aizawl 796004, India)

  • Arup Das

    (Department of Electrical Engineering, Mizoram University, Aizawl 796004, India)

  • Subhojit Dawn

    (Department of Electrical & Electronics Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada 520007, India)

  • Sadhan Gope

    (Department of Electrical Engineering, Mizoram University, Aizawl 796004, India)

  • Taha Selim Ustun

    (Fukushima Renewable Energy Institute, AIST (FREA), Koriyama 963-0298, Japan)

Abstract

The integration of renewable energy sources with active thermal power plants contributes to the green environment all over the globe. To achieve maximum reliability and sustainability of the renewable-thermal hybrid system, plentiful constraints need to be considered for minimizing the situation, which creates due to the unpredictable nature of renewable energy. In wind integrated deregulated system, wind farms need to submit the power generation scenario for future days to Independent System Operator (ISO) before the date of operation. Based on their submitted bid, ISO scheduled the power generation from different generating stations, including thermal and renewable. Due to the uncertain nature of the wind flow, there is always a chance of not fulfilling the scheduling amount of power from the wind farm. This violation in the market can impose an economic burden (i.e., imbalance cost) on the generating companies. The solar photovoltaic cell can be used to decrease the adverse economic effects of unpredicted wind saturation in the deregulated system. This paper presents consistent, competent, and effective operating schemes for the hybrid operation of solar PV and wind farms to maximize the economic profit by minimizing the imbalance cost, which occurs due to the mismatch between the actual and predicted wind speed. Modified IEEE 14-bus and modified IEEE 30-bus test systems have been used to check the usefulness of the proposed approach. Three optimization techniques (i.e., Sequential Quadratic Programming (SQP), Smart Flower Optimization Algorithm (SFOA), Honey Badger Algorithm (HBA)) have been used in this work for the comparative study. Bus Loading Factor (BLF) has been proposed here to identify the most sensitive bus in the system, used to place wind farms. The SFOA and HBA optimization technique has been used first time in this type of economic assessment problem, which is the novelty of this paper. The Bus Loading Factor (BLF) has been introduced here to identify the most sensitive bus in the system. After implementing the work, it has been seen that the operation of the solar PV system has reduced the adverse effect of imbalance cost on the renewable integrated deregulated power system.

Suggested Citation

  • Shreya Shree Das & Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5005-:d:799161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dawn, Subhojit & Tiwari, Prashant Kumar & Goswami, Arup Kumar, 2017. "An approach for efficient assessment of the performance of double auction competitive power market under variable imbalance cost due to high uncertain wind penetration," Renewable Energy, Elsevier, vol. 108(C), pages 230-243.
    2. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    3. Sanni, Shereefdeen Oladapo & Oricha, Joseph Yakubu & Oyewole, Taoheed Oluwafemi & Bawonda, Femi Ikotoni, 2021. "Analysis of backup power supply for unreliable grid using hybrid solar PV/diesel/biogas system," Energy, Elsevier, vol. 227(C).
    4. Gomes, I.L.R. & Pousinho, H.M.I. & Melício, R. & Mendes, V.M.F., 2017. "Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market," Energy, Elsevier, vol. 124(C), pages 310-320.
    5. Xiao, Xiangsheng & Wang, Jianxiao & Lin, Rui & Hill, David J. & Kang, Chongqing, 2020. "Large-scale aggregation of prosumers toward strategic bidding in joint energy and regulation markets," Applied Energy, Elsevier, vol. 271(C).
    6. Dhundhara, Sandeep & Verma, Yajvender Pal, 2018. "Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system," Energy, Elsevier, vol. 147(C), pages 1108-1128.
    7. Israfil Hussain & Dulal Chandra Das & Nidul Sinha & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Performance Assessment of an Islanded Hybrid Power System with Different Storage Combinations Using an FPA-Tuned Two-Degree-of-Freedom (2DOF) Controller," Energies, MDPI, vol. 13(21), pages 1-20, October.
    8. Abdul Latif & S. M. Suhail Hussain & Dulal Chandra Das & Taha Selim Ustun, 2020. "Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI − (1 + ID) Controller for Frequency Response of a Microgrid," Energies, MDPI, vol. 13(13), pages 1-12, July.
    9. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2021. "Imbalance mitigation strategy via flexible PV ancillary services: The Italian case study," Renewable Energy, Elsevier, vol. 179(C), pages 1694-1705.
    10. Ustun, Taha Selim & Nakamura, Yasuhiro & Hashimoto, Jun & Otani, Kenji, 2019. "Performance analysis of PV panels based on different technologies after two years of outdoor exposure in Fukushima, Japan," Renewable Energy, Elsevier, vol. 136(C), pages 159-178.
    11. Partha Pratim Dey & Dulal Chandra Das & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Active Power Management of Virtual Power Plant under Penetration of Central Receiver Solar Thermal-Wind Using Butterfly Optimization Technique," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    12. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shibo Li & Hu Zhou & Genzhu Xu, 2023. "Research on Optimal Configuration of Landscape Storage in Public Buildings Based on Improved NSGA-II," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    2. Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    3. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2022. "System Profit Improvement of a Thermal–Wind–CAES Hybrid System Considering Imbalance Cost in the Electricity Market," Energies, MDPI, vol. 15(24), pages 1-25, December.
    4. Valentyna Kukharets & Dalia Juočiūnienė & Taras Hutsol & Olena Sukmaniuk & Jonas Čėsna & Savelii Kukharets & Piotr Piersa & Szymon Szufa & Iryna Horetska & Alona Shevtsova, 2023. "An Algorithm for Managerial Actions on the Rational Use of Renewable Sources of Energy: Determination of the Energy Potential of Biomass in Lithuania," Energies, MDPI, vol. 16(1), pages 1-17, January.
    5. Subhojit Dawn & Gummadi Srinivasa Rao & M. L. N. Vital & K. Dhananjay Rao & Faisal Alsaif & Mohammed H. Alsharif, 2023. "Profit Extension of a Wind-Integrated Competitive Power System by Vehicle-to-Grid Integration and UPFC Placement," Energies, MDPI, vol. 16(18), pages 1-24, September.
    6. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    7. Sheikh Safiullah & Asadur Rahman & Shameem Ahmad Lone & S. M. Suhail Hussain & Taha Selim Ustun, 2022. "Novel COVID-19 Based Optimization Algorithm (C-19BOA) for Performance Improvement of Power Systems," Sustainability, MDPI, vol. 14(21), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    2. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.
    3. Ganesh Sampatrao Patil & Anwar Mulla & Taha Selim Ustun, 2022. "Impact of Wind Farm Integration on LMP in Deregulated Energy Markets," Sustainability, MDPI, vol. 14(7), pages 1-20, April.
    4. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2023. "System Economy Improvement and Risk Shortening by Fuel Cell-UPFC Placement in a Wind-Combined System," Energies, MDPI, vol. 16(4), pages 1-30, February.
    5. Sudhanshu Ranjan & Smriti Jaiswal & Abdul Latif & Dulal Chandra Das & Nidul Sinha & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Isolated and Interconnected Multi-Area Hybrid Power Systems: A Review on Control Strategies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    6. Preeti Ranjan Sahu & Rajesh Kumar Lenka & Rajendra Kumar Khadanga & Prakash Kumar Hota & Sidhartha Panda & Taha Selim Ustun, 2022. "Power System Stability Improvement of FACTS Controller and PSS Design: A Time-Delay Approach," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    7. Taha Selim Ustun, 2022. "Power Systems Imitate Nature for Improved Performance Use of Nature-Inspired Optimization Techniques," Energies, MDPI, vol. 15(17), pages 1-2, August.
    8. Anurag Chauhan & Subho Upadhyay & Mohd. Tauseef Khan & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Performance Investigation of a Solar Photovoltaic/Diesel Generator Based Hybrid System with Cycle Charging Strategy Using BBO Algorithm," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    9. Pal, Ankit & Ilango, G. Saravana, 2024. "Design and techno-economic analysis of an off-grid integrated PV-biogas system with a constant temperature digester for a cost-effective rural application," Energy, Elsevier, vol. 287(C).
    10. Emad A. Mohamed & Mokhtar Aly & Masayuki Watanabe, 2022. "New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids," Mathematics, MDPI, vol. 10(16), pages 1-33, August.
    11. Olga Pisani & Henri Diémoz & Claudio Cassardo, 2023. "Characterisation and Field Test of a Simple AvaSpec Array Spectroradiometer for Solar Irradiance Measurements at an Alpine Site," Energies, MDPI, vol. 16(7), pages 1-26, March.
    12. Younessi, Hiva Seyed & Bahramara, Salah & Adabi, Farid & Golpîra, Hêmin, 2023. "Modeling the optimal sizing problem of the biogas-based electrical generator in a livestock farm considering a gas storage tank and the anaerobic digester process under the uncertainty of cow dung," Energy, Elsevier, vol. 270(C).
    13. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    14. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.
    15. Ángel A. Bayod-Rújula & Juan A. Tejero-Gómez, 2022. "Analysis of the Hybridization of PV Plants with a BESS for Annual Constant Power Operation," Energies, MDPI, vol. 15(23), pages 1-18, November.
    16. Andrea Mazza & Hamidreza Mirtaheri & Gianfranco Chicco & Angela Russo & Maurizio Fantino, 2019. "Location and Sizing of Battery Energy Storage Units in Low Voltage Distribution Networks," Energies, MDPI, vol. 13(1), pages 1-20, December.
    17. Carmine Cancro & Camelia Delcea & Salvatore Fabozzi & Gabriella Ferruzzi & Giorgio Graditi & Valeria Palladino & Maria Valenti, 2022. "A Profitability Analysis for an Aggregator in the Ancillary Services Market: An Italian Case Study," Energies, MDPI, vol. 15(9), pages 1-26, April.
    18. Ting Zhang & Shuaishuai Cao & Lingying Pan & Chenyu Zhou, 2020. "A Policy Effect Analysis of China’s Energy Storage Development Based on a Multi-Agent Evolutionary Game Model," Energies, MDPI, vol. 13(23), pages 1-35, November.
    19. Gonçalves Rigueira Pinheiro Castro, Pedro Henrique & Filho, Delly Oliveira & Rosa, André Pereira & Navas Gracia, Luis Manuel & Almeida Silva, Thais Cristina, 2024. "Comparison of externalities of biogas and photovoltaic solar energy for energy planning," Energy Policy, Elsevier, vol. 188(C).
    20. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5005-:d:799161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.