IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032364.html
   My bibliography  Save this article

Impact study of integrating solar double chimney power plant into electrical grid

Author

Listed:
  • Almaita, Eyad
  • Abdelsalam, Emad
  • Almomani, Fares
  • Nawafah, Hamza
  • Kassem, Fadwa
  • Alshkoor, Saleh
  • Shloul, Maan

Abstract

Integrating a novel design of Solar Double Chimney Power Plant system (SDCPPS) into a traditional medium voltage (MV)) distribution grid in the Safawi area, Jordan was presented. The impact of full-day integration of the maximum electrical energy on the performance indices of voltage profile (VP), power factor (PF), losses, and voltage step (VS) was assessed. The SDCPP operates under uniform electrical energy production even under varied weather conditions to generate 286.6 MWh/year. Connecting the SDCPP to the Medium Voltage (MV) point allows for electrical energy stabilization, minimizes energy losses, and maintains the allowable PF. The maximum reduction of voltage deviation (VD), and the average and maximum reduction in the losses were 0.93%, 0.34%, and 0.43%, respectively, The VS limit at the point of common coupling was within the 3% of the rated voltage. The PF dropped to 0.72 due to the increase of pure active power generated from the SDCPPS. Improving the combined PF is based on the BSP, which should be operated under 0.88 leading to keeping the SDCPPS running in the PF control mode as per connection code requirements. The performance of the SDCPPS has the edge over other renewable energy sources for all performance indices.

Suggested Citation

  • Almaita, Eyad & Abdelsalam, Emad & Almomani, Fares & Nawafah, Hamza & Kassem, Fadwa & Alshkoor, Saleh & Shloul, Maan, 2023. "Impact study of integrating solar double chimney power plant into electrical grid," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032364
    DOI: 10.1016/j.energy.2022.126350
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yangyang & Zhou, Xinping, 2019. "Performance of a modified solar chimney power plant for power generation and vegetation," Energy, Elsevier, vol. 171(C), pages 502-509.
    2. Emad Abdelsalam & Feras Kafiah & Malek Alkasrawi & Ismael Al-Hinti & Ahmad Azzam, 2020. "Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP)," Energies, MDPI, vol. 13(11), pages 1-14, June.
    3. Singh, Ajeet Pratap & Kumar, Amit & Akshayveer, & Singh, O.P., 2021. "A novel concept of integrating bell-mouth inlet in converging-diverging solar chimney power plant," Renewable Energy, Elsevier, vol. 169(C), pages 318-334.
    4. Zuo, Lu & Liu, Zihan & Dai, Pengzhan & Qu, Ning & Ding, Ling & Zheng, Yuan & Ge, Yunting, 2021. "Economic performance evaluation of the wind supercharging solar chimney power plant combining desalination and waste heat after parameter optimization," Energy, Elsevier, vol. 227(C).
    5. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    6. Emad Abdelsalam & Feras Kafiah & Fares Almomani & Muhammad Tawalbeh & Sanad Kiswani & Asma Khasawneh & Dana Ibrahim & Malek Alkasrawi, 2021. "An Innovative Design of a Solar Double-Chimney Power Plant for Electricity Generation," Energies, MDPI, vol. 14(19), pages 1-21, September.
    7. Kabeel, A.E., 2009. "Performance of solar still with a concave wick evaporation surface," Energy, Elsevier, vol. 34(10), pages 1504-1509.
    8. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    9. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Tejasvi & Kumar, Amitesh, 2024. "Numerical analysis of the divergent solar chimney power plant with a novel arc and fillet radius at the chimney base region," Renewable Energy, Elsevier, vol. 228(C).
    2. Bin Li & Samrawit Bzayene Fesseha & Songsong Chen & Ying Zhou, 2024. "Real-Time Solar Power Generation Scheduling for Maintenance and Suboptimally Performing Equipment Using Demand Response Unified with Model Predictive Control," Energies, MDPI, vol. 17(13), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emad Abdelsalam & Feras Kafiah & Fares Almomani & Muhammad Tawalbeh & Sanad Kiswani & Asma Khasawneh & Dana Ibrahim & Malek Alkasrawi, 2021. "An Innovative Design of a Solar Double-Chimney Power Plant for Electricity Generation," Energies, MDPI, vol. 14(19), pages 1-21, September.
    2. Emad Abdelsalam & Fares Almomani & Feras Kafiah & Eyad Almaitta & Muhammad Tawalbeh & Asma Khasawneh & Dareen Habash & Abdullah Omar & Malek Alkasrawi, 2021. "A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination," Sustainability, MDPI, vol. 13(21), pages 1-24, November.
    3. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    4. Aziz, Mohamed A. & Elsayed, Ahmed M., 2022. "Thermofluid effects of solar chimney geometry on performance parameters," Renewable Energy, Elsevier, vol. 200(C), pages 674-693.
    5. Fallah, Seyyed Hossein & Valipour, Mohammad Sadegh, 2022. "Numerical investigation of a small scale sloped solar chimney power plant," Renewable Energy, Elsevier, vol. 183(C), pages 1-11.
    6. Hendra Hendra & Dhimas Satria & Hernadewita Hernadewita & Yozerizal Yozerizal & Frengki Hardian & Ahmed M. Galal, 2023. "Performance of Generator Translation and Rotation on Stroke Length Drive of the Two-Rod Mechanism in Renewable Energy Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    7. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    8. Kalidasa Murugavel, K. & Anburaj, P. & Samuel Hanson, R. & Elango, T., 2013. "Progresses in inclined type solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 364-377.
    9. Ali O. Al-Sulttani & Amimul Ahsan & Basim A. R. Al-Bakri & Mahir Mahmod Hason & Nik Norsyahariati Nik Daud & S. Idrus & Omer A. Alawi & Elżbieta Macioszek & Zaher Mundher Yaseen, 2022. "Double-Slope Solar Still Productivity Based on the Number of Rubber Scraper Motions," Energies, MDPI, vol. 15(21), pages 1-34, October.
    10. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    11. Prakash, P. & Velmurugan, V., 2015. "Parameters influencing the productivity of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 585-609.
    12. Durkaieswaran, P. & Murugavel, K. Kalidasa, 2015. "Various special designs of single basin passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1048-1060.
    13. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    14. Xiong, Hanbing & Ming, Tingzhen & Shi, Tianhao & Wu, Yongjia & Li, Wei & de Richter, Renaud & Zhou, Nan, 2024. "Numerical investigation on performance of solar chimney power plant with three wind resistant structures," Energy, Elsevier, vol. 297(C).
    15. Saheb Khanabdal & Mahdi Banejad & Frede Blaabjerg & Nasser Hosseinzadeh, 2021. "A Novel Power Sharing Strategy Based on Virtual Flux Droop and Model Predictive Control for Islanded Low-Voltage AC Microgrids," Energies, MDPI, vol. 14(16), pages 1-17, August.
    16. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Siti Fairuz Juiani & Norazian Mohamed Noor & Mohd Hafiz Zawawi & Jazaul Ikhsan, 2022. "Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    17. Hassan Zohair Hassan, 2023. "Performance Enhancement of the Basic Solar Chimney Power Plant Integrated with an Adsorption Cooling System with Heat Recovery from the Condenser," Energies, MDPI, vol. 17(1), pages 1-35, December.
    18. Al-Sulttani, Ali O. & Ahsan, Amimul & Hanoon, Ammar N. & Rahman, A. & Daud, N.N.N. & Idrus, S., 2017. "Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique," Applied Energy, Elsevier, vol. 203(C), pages 280-303.
    19. Manikandan, V. & Shanmugasundaram, K. & Shanmugan, S. & Janarthanan, B. & Chandrasekaran, J., 2013. "Wick type solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 322-335.
    20. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.