IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p136-d1307916.html
   My bibliography  Save this article

Performance Enhancement of the Basic Solar Chimney Power Plant Integrated with an Adsorption Cooling System with Heat Recovery from the Condenser

Author

Listed:
  • Hassan Zohair Hassan

    (Department of Mechanical Engineering, College of Engineering, Alfaisal University, Takhassusi St., Al Maather Road, P.O. Box 50927, Riyadh 11533, Saudi Arabia)

Abstract

In a previous work, a solar chimney power plant integrated with a solid sorption cooling system for power and cold cogeneration was developed. This prior work showed that reusing the heat released from the adsorption bed enhances the system’s utilization of solar energy and increases the turbine’s output power. In the present paper, a subsequent modification to the arrangement and operation of the preceding system is introduced. The primary objective of the modification is to enhance performance and increase the plant’s capacity to effectively harness the available solar radiation. The method involves placing the condenser tubes at the solar collector entrance. Therefore, the airflow captures the condenser-released heat before it enters the collector. The modified configuration and operation of the system are discussed. A dynamic mathematical model is established to simulate the hybrid system’s operation and evaluate its parameters. The obtained results show that a 5.95% increase in output power can be achieved by recovering the heat of condensation. Furthermore, the modified system attains a 6% increase in solar-to-electricity conversion efficiency compared with the basic system. The findings suggest that the modified system, which recycles condenser heat, provides noticeable enhanced performance compared with the basic system.

Suggested Citation

  • Hassan Zohair Hassan, 2023. "Performance Enhancement of the Basic Solar Chimney Power Plant Integrated with an Adsorption Cooling System with Heat Recovery from the Condenser," Energies, MDPI, vol. 17(1), pages 1-35, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:136-:d:1307916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emad Abdelsalam & Feras Kafiah & Fares Almomani & Muhammad Tawalbeh & Sanad Kiswani & Asma Khasawneh & Dana Ibrahim & Malek Alkasrawi, 2021. "An Innovative Design of a Solar Double-Chimney Power Plant for Electricity Generation," Energies, MDPI, vol. 14(19), pages 1-21, September.
    2. Nirmalendu Biswas & Dipak Kumar Mandal & Sharmistha Bose & Nirmal K. Manna & Ali Cemal Benim, 2023. "Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review," Energies, MDPI, vol. 16(17), pages 1-41, August.
    3. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    4. Suad Hassan Danook & Hussein A. Z. AL-bonsrulah & Ishak Hashim & Dhinakaran Veeman, 2021. "CFD Simulation of a 3D Solar Chimney Integrated with an Axial Turbine for Power Generation," Energies, MDPI, vol. 14(18), pages 1-22, September.
    5. Emad Abdelsalam & Fares Almomani & Shadwa Ibrahim & Feras Kafiah & Mohammad Jamjoum & Malek Alkasrawi, 2023. "A Novel Design of a Hybrid Solar Double-Chimney Power Plant for Generating Electricity and Distilled Water," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nirmalendu Biswas & Dipak Kumar Mandal & Sharmistha Bose & Nirmal K. Manna & Ali Cemal Benim, 2023. "Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review," Energies, MDPI, vol. 16(17), pages 1-41, August.
    2. Hassan Zohair Hassan, 2022. "Transient Analysis of a Solar Chimney Power Plant Integrated with a Solid-Sorption Cooling System for Combined Power and Chilled Water Production," Energies, MDPI, vol. 15(18), pages 1-20, September.
    3. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).
    4. Varun Pratap Singh & Gaurav Dwivedi, 2023. "Technical Analysis of a Large-Scale Solar Updraft Tower Power Plant," Energies, MDPI, vol. 16(1), pages 1-28, January.
    5. Zhao, Yang & Wang, Ranxu & Gao, Dan & Chen, Haiping & Zhang, Heng, 2024. "Numerical investigation and optimization of a multi-stage Tesla-valve channel based photovoltaic/thermal module," Renewable Energy, Elsevier, vol. 228(C).
    6. Neeraj Mehla & Krishan Kumar & Manoj Kumar, 2019. "Thermal analysis of solar updraft tower by using different absorbers with convergent chimney," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1251-1269, June.
    7. Emad Abdelsalam & Fares Almomani & Shadwa Ibrahim & Feras Kafiah & Mohammad Jamjoum & Malek Alkasrawi, 2023. "A Novel Design of a Hybrid Solar Double-Chimney Power Plant for Generating Electricity and Distilled Water," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    8. Ping Yuan & Zhicheng Fang & Wanjiang Wang & Yanhui Chen & Ke Li, 2023. "Numerical Simulation Analysis and Full-Scale Experimental Validation of a Lower Wall-Mounted Solar Chimney with Different Radiation Models," Sustainability, MDPI, vol. 15(15), pages 1-16, August.
    9. Singh, Ajeet Pratap & Kumar, Amit & Akshayveer, & Singh, O.P., 2021. "A novel concept of integrating bell-mouth inlet in converging-diverging solar chimney power plant," Renewable Energy, Elsevier, vol. 169(C), pages 318-334.
    10. Zhang, Sheng & Cheng, Yong & Liu, Jian & Lin, Zhang, 2019. "Subzone control optimization of air distribution for thermal comfort and energy efficiency under cooling load uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Xu, Yangyang & Zhou, Xinping, 2019. "Performance of a modified solar chimney power plant for power generation and vegetation," Energy, Elsevier, vol. 171(C), pages 502-509.
    12. Ming, Tingzhen & Gong, Tingrui & de Richter, Renaud K. & Cai, Cunjin & Sherif, S.A., 2017. "Numerical analysis of seawater desalination based on a solar chimney power plant," Applied Energy, Elsevier, vol. 208(C), pages 1258-1273.
    13. Seungjin Lee & Yoon Seok Kim & Joong Yull Park, 2018. "Numerical Investigation on the Effects of Baffles with Various Thermal and Geometrical Conditions on Thermo-Fluid Dynamics and Kinetic Power of a Solar Updraft Tower," Energies, MDPI, vol. 11(9), pages 1-14, August.
    14. Almaita, Eyad & Abdelsalam, Emad & Almomani, Fares & Nawafah, Hamza & Kassem, Fadwa & Alshkoor, Saleh & Shloul, Maan, 2023. "Impact study of integrating solar double chimney power plant into electrical grid," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:136-:d:1307916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.