IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5799-d635268.html
   My bibliography  Save this article

Evaluating the Combined Effect of Climate Change and Urban Microclimate on Buildings’ Heating and Cooling Energy Demand in a Mediterranean City

Author

Listed:
  • Stella Tsoka

    (Faculty of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Kondylia Velikou

    (School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Konstantia Tolika

    (School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Aikaterini Tsikaloudaki

    (Faculty of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

Climate change has a major impact on the urban built environment, both with respect to the heating and cooling energy requirements, but also regarding the higher probability of confronting extreme events such as heatwaves. In parallel, the ongoing urbanization, the urban microclimate and the formation of the urban heat island effect, compounding the ongoing climate change, is also a considerable determinant of the building’s energy behavior and the outdoor thermal environment. To evaluate the magnitude of the complex phenomenon, the current research investigates the effect of climate change and urban heat island on heating and cooling energy needs of an urban building unit in Thessaloniki, Greece. The study comparatively evaluates different tools for the generation of future weather datasets, considering both statistical and dynamical downscaling methods, with the latter involving the use of a regional climate model. Based on the output of the regional climate model, another future weather dataset is created, considering not only the general climatic conditions, but also the microclimatic parameters of the examined case study area, under the future climate projections. The generated future weather datasets are then used as an input parameter in the dynamic energy performance simulations with EnergyPlus. For all examined weather datasets, the simulation results show a decrease of the heating energy use, an effect that is strongly counterbalanced by the rise of the cooling energy demand. The obtained simulation results also reveal the contribution of the urban warming of the ongoing climate change, demonstrating the need to perform a holistic analysis for the buildings’ energy needs under future climate conditions.

Suggested Citation

  • Stella Tsoka & Kondylia Velikou & Konstantia Tolika & Aikaterini Tsikaloudaki, 2021. "Evaluating the Combined Effect of Climate Change and Urban Microclimate on Buildings’ Heating and Cooling Energy Demand in a Mediterranean City," Energies, MDPI, vol. 14(18), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5799-:d:635268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Peng & Huang, Yu Joe & Miller, Norman & Schlegel, Nicole & Shen, Pengyuan, 2012. "Impacts of climate change on building heating and cooling energy patterns in California," Energy, Elsevier, vol. 44(1), pages 792-804.
    2. Shady Attia & Camille Gobin, 2020. "Climate Change Effects on Belgian Households: A Case Study of a Nearly Zero Energy Building," Energies, MDPI, vol. 13(20), pages 1-11, October.
    3. Qunying Luo & Li Wen & John McGregor & Bertrand Timbal, 2013. "A comparison of downscaling techniques in the projection of local climate change and wheat yields," Climatic Change, Springer, vol. 120(1), pages 249-261, September.
    4. Im, Piljae & Joe, Jaewan & Bae, Yeonjin & New, Joshua R., 2020. "Empirical validation of building energy modeling for multi-zones commercial buildings in cooling season," Applied Energy, Elsevier, vol. 261(C).
    5. A. Casanueva & S. Herrera & J. Fernández & J.M. Gutiérrez, 2016. "Towards a fair comparison of statistical and dynamical downscaling in the framework of the EURO-CORDEX initiative," Climatic Change, Springer, vol. 137(3), pages 411-426, August.
    6. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    7. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    8. Berardi, Umberto & Jafarpur, Pouriya, 2020. "Assessing the impact of climate change on building heating and cooling energy demand in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Halkos, 2022. "New Assessment Methods of Future Conditions for Main Vulnerabilities and Risks from Climate Change," Energies, MDPI, vol. 15(19), pages 1-5, October.
    2. Alberto Barbaresi & Mattia Ceccarelli & Giulia Menichetti & Daniele Torreggiani & Patrizia Tassinari & Marco Bovo, 2022. "Application of Machine Learning Models for Fast and Accurate Predictions of Building Energy Need," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    3. Hassan Bazazzadeh & Peiman Pilechiha & Adam Nadolny & Mohammadjavad Mahdavinejad & Seyedeh sara Hashemi safaei, 2021. "The Impact Assessment of Climate Change on Building Energy Consumption in Poland," Energies, MDPI, vol. 14(14), pages 1-17, July.
    4. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    5. Liyanage, Don Rukmal & Hewage, Kasun & Hussain, Syed Asad & Razi, Faran & Sadiq, Rehan, 2024. "Climate adaptation of existing buildings: A critical review on planning energy retrofit strategies for future climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Berardi, Umberto & Jafarpur, Pouriya, 2020. "Assessing the impact of climate change on building heating and cooling energy demand in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Shady Attia & Camille Gobin, 2020. "Climate Change Effects on Belgian Households: A Case Study of a Nearly Zero Energy Building," Energies, MDPI, vol. 13(20), pages 1-11, October.
    8. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    9. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    11. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    12. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    13. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    14. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    15. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    16. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    17. Tamás Hajdu & Gábor Hajdu, 2022. "Temperature, climate change, and human conception rates: evidence from Hungary," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1751-1776, October.
    18. Meraj Sarwary & Senthilnathan Samiappan & Ghulam Dastgir Khan & Masaood Moahid, 2023. "Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    19. Jiufeng Wei & Hufang Zhang & Wanqing Zhao & Qing Zhao, 2017. "Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-17, July.
    20. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5799-:d:635268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.