IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v298y2021ics0306261921006668.html
   My bibliography  Save this article

Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment

Author

Listed:
  • Yang, Yuchen
  • Javanroodi, Kavan
  • Nik, Vahid M.

Abstract

In recent years, climate change and the corresponding expected extreme weather conditions have been widely recognized as potential problems. The building industry is taking various actions to achieve sustainable development, implement energy conservation strategies, and provide climate change mitigation. In addition to mitigation, it is crucial to adapt to climate change, and to investigate the possible risks and limitations of mitigation strategies. Although the importance of climate change adaptation is well-understood, there are still challenges in understanding and modeling the impacts of climate change, and the consequent risks and extremes. This work provides a comprehensive study of the impacts of climate change on the energy performances and thermal comfort of European residential building stocks. To perform an unbiased assessment and account for climate uncertainties and extreme events, a large set of future climate data was used for a 90-year period (2010–2099). Climate data for 38 European cities in five different climate zones, downscaled by the “RCA4” regional climate model, were synthesized and applied to simulate the respective energy performances of the residential building stocks in the cities. The results suggest that there will be larger needs for cooling buildings in the future and less heating demand; however, there are differences in the variation rates between zones and cities. Discomfort hours will increase notably in cities within cooling-dominated zones, but will not be affected considerably in cities within heating-dominated zones. In addition to long-term changes, climate-induced extremes can considerably affect future energy demands, especially the cooling demand; this may become challenging for both buildings and energy systems.

Suggested Citation

  • Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006668
    DOI: 10.1016/j.apenergy.2021.117246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921006668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    2. Spandagos, Constantinos & Ng, Tze Ling, 2017. "Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities," Applied Energy, Elsevier, vol. 189(C), pages 352-368.
    3. Rodrigues, Eugénio & Fernandes, Marco S., 2020. "Overheating risk in Mediterranean residential buildings: Comparison of current and future climate scenarios," Applied Energy, Elsevier, vol. 259(C).
    4. Charlier, Dorothée & Risch, Anna, 2012. "Evaluation of the impact of environmental public policy measures on energy consumption and greenhouse gas emissions in the French residential sector," Energy Policy, Elsevier, vol. 46(C), pages 170-184.
    5. Martinopoulos, Georgios & Papakostas, Konstantinos T. & Papadopoulos, Agis M., 2018. "A comparative review of heating systems in EU countries, based on efficiency and fuel cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 687-699.
    6. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    7. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    8. Mortimer, N. D. & Ashley, A. & Elsayed, M. & Kelly, M. D. & Rix, J. H. R., 1999. "Developing a database of energy use in the UK non-domestic building stock," Energy Policy, Elsevier, vol. 27(8), pages 451-468, August.
    9. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    10. Arthur Charpentier, 2011. "On the return period of the 2003 heat wave," Climatic Change, Springer, vol. 109(3), pages 245-260, December.
    11. Troup, Luke & Eckelman, Matthew J. & Fannon, David, 2019. "Simulating future energy consumption in office buildings using an ensemble of morphed climate data," Applied Energy, Elsevier, vol. 255(C).
    12. Sartori, Igor & Wachenfeldt, Bjrn Jensen & Hestnes, Anne Grete, 2009. "Energy demand in the Norwegian building stock: Scenarios on potential reduction," Energy Policy, Elsevier, vol. 37(5), pages 1614-1627, May.
    13. Madi Kaboré & Emmanuel Bozonnet & Patrick Salagnac, 2020. "Building and Urban Cooling Performance Indexes of Wetted and Green Roofs—A Case Study under Current and Future Climates," Energies, MDPI, vol. 13(23), pages 1-16, November.
    14. Ghahramani, Ali & Zhang, Kenan & Dutta, Kanu & Yang, Zheng & Becerik-Gerber, Burcin, 2016. "Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings," Applied Energy, Elsevier, vol. 165(C), pages 930-942.
    15. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    16. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    17. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    18. Adilkhanova, Indira & Memon, Shazim Ali & Kim, Jong & Sheriyev, Almas, 2021. "A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime," Energy, Elsevier, vol. 217(C).
    19. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    20. Kotireddy, Rajesh & Hoes, Pieter-Jan & Hensen, Jan L.M., 2018. "A methodology for performance robustness assessment of low-energy buildings using scenario analysis," Applied Energy, Elsevier, vol. 212(C), pages 428-442.
    21. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    22. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2019. "The feasibility and importance of considering climate change impacts in building retrofit analysis," Applied Energy, Elsevier, vol. 233, pages 254-270.
    23. Muñoz González, C.Mª & León Rodríguez, A.L. & Suárez Medina, R. & Ruiz Jaramillo, J., 2020. "Effects of future climate change on the preservation of artworks, thermal comfort and energy consumption in historic buildings," Applied Energy, Elsevier, vol. 276(C).
    24. Nik, Vahid M., 2016. "Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models (RCMs)," Applied Energy, Elsevier, vol. 177(C), pages 204-226.
    25. Anaïs Machard & Christian Inard & Jean-Marie Alessandrini & Charles Pelé & Jacques Ribéron, 2020. "A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data," Energies, MDPI, vol. 13(13), pages 1-36, July.
    26. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    27. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    28. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    29. Anne Gobin & Le Thi Thu Hien & Le Trinh Hai & Pham Ha Linh & Nguyen Ngoc Thang & Pham Quang Vinh, 2020. "Adaptation to Land Degradation in Southeast Vietnam," Land, MDPI, vol. 9(9), pages 1-25, August.
    30. Olonscheck, Mady & Holsten, Anne & Kropp, Jürgen P., 2011. "Heating and cooling energy demand and related emissions of the German residential building stock under climate change," Energy Policy, Elsevier, vol. 39(9), pages 4795-4806, September.
    31. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    32. Cohen, Barney, 2006. "Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability," Technology in Society, Elsevier, vol. 28(1), pages 63-80.
    33. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2017. "Energy use implications of different design strategies for multi-storey residential buildings under future climates," Energy, Elsevier, vol. 138(C), pages 846-860.
    34. Emmanuel Pannier & Toan Canh Vu & Etienne Espagne & Gwenn Pulliat & Thi Thu Ha Nguyen, 2020. "The Three Dialectics of Adaptation Finance in Vietnam," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    35. Arthur Charpentier, 2011. "Erratum to: On the return period of the 2003 heat wave," Climatic Change, Springer, vol. 109(3), pages 261-261, December.
    36. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings," Energy, Elsevier, vol. 190(C).
    37. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric D. & Reyna, Janet, 2019. "Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change," Applied Energy, Elsevier, vol. 236(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Zhang, Sheng & Liu, Jun & Wang, Fenghao & Chai, Jiale, 2023. "Design optimization of medium-deep borehole heat exchanger for building heating under climate change," Energy, Elsevier, vol. 282(C).
    3. Adeyeri, Oluwafemi E. & Zhou, Wen & Laux, Patrick & Wang, Xuan & Dieng, Diarra & Widana, Lakshani A.E. & Usman, Muhammad, 2023. "Land use and land cover dynamics: Implications for thermal stress and energy demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Bruck, Axel & Díaz Ruano, Santiago & Auer, Hans, 2022. "One piece of the puzzle towards 100 Positive Energy Districts (PEDs) across Europe by 2025: An open-source approach to unveil favourable locations of PV-based PEDs from a techno-economic perspective," Energy, Elsevier, vol. 254(PA).
    5. Ehsan Ahmadian & Chris Bingham & Amira Elnokaly & Behzad Sodagar & Ivan Verhaert, 2022. "Impact of Climate Change and Technological Innovation on the Energy Performance and Built form of Future Cities," Energies, MDPI, vol. 15(22), pages 1-22, November.
    6. Cai, Jinyang & Zheng, Huanyu & Vardanyan, Michael & Shen, Zhiyang, 2023. "Achieving carbon neutrality through green technological progress: evidence from China," Energy Policy, Elsevier, vol. 173(C).
    7. Olivier Dartevelle & Sergio Altomonte & Gabrielle Masy & Erwin Mlecnik & Geoffrey van Moeseke, 2022. "Indoor Summer Thermal Comfort in a Changing Climate: The Case of a Nearly Zero Energy House in Wallonia (Belgium)," Energies, MDPI, vol. 15(7), pages 1-13, March.
    8. Rosa Francesca De Masi & Valentino Festa & Antonio Gigante & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2021. "Effect of Climate Changes on Renewable Production in the Mediterranean Climate: Case Study of the Energy Retrofit for a Detached House," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    9. Dorina Camelia Ilies & Grigore Vasile Herman & Bahodirhon Safarov & Alexandru Ilies & Lucian Blaga & Tudor Caciora & Ana Cornelia Peres & Vasile Grama & Sigit Widodo Bambang & Telesphore Brou & Franco, 2023. "Indoor Air Quality Perception in Built Cultural Heritage in Times of Climate Change," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    10. D'Agostino, Delia & Congedo, Paolo Maria & Albanese, Paola Maria & Rubino, Alessandro & Baglivo, Cristina, 2024. "Impact of climate change on the energy performance of building envelopes and implications on energy regulations across Europe," Energy, Elsevier, vol. 288(C).
    11. Aya Mansouri & Wenjuan Wei & Jean-Marie Alessandrini & Corinne Mandin & Patrice Blondeau, 2022. "Impact of Climate Change on Indoor Air Quality: A Review," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    12. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    13. Perera, A.T.D. & Khayatian, F. & Eggimann, S. & Orehounig, K. & Halgamuge, Saman, 2022. "Quantifying the climate and human-system-driven uncertainties in energy planning by using GANs," Applied Energy, Elsevier, vol. 328(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    2. De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2021. "Impact of weather data and climate change projections in the refurbishment design of residential buildings in cooling dominated climate," Applied Energy, Elsevier, vol. 303(C).
    3. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    4. S. Soutullo & E. Giancola & M. J. Jiménez & J. A. Ferrer & M. N. Sánchez, 2020. "How Climate Trends Impact on the Thermal Performance of a Typical Residential Building in Madrid," Energies, MDPI, vol. 13(1), pages 1-21, January.
    5. Anaïs Machard & Christian Inard & Jean-Marie Alessandrini & Charles Pelé & Jacques Ribéron, 2020. "A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data," Energies, MDPI, vol. 13(13), pages 1-36, July.
    6. Francesco Fiorito & Giandomenico Vurro & Francesco Carlucci & Ludovica Maria Campagna & Mariella De Fino & Salvatore Carlucci & Fabio Fatiguso, 2022. "Adaptation of Users to Future Climate Conditions in Naturally Ventilated Historic Buildings: Effects on Indoor Comfort," Energies, MDPI, vol. 15(14), pages 1-21, July.
    7. Amin, Amin & Mourshed, Monjur, 2024. "Weather and climate data for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    9. Yassaghi, Hamed & Gurian, Patrick L. & Hoque, Simi, 2020. "Propagating downscaled future weather file uncertainties into building energy use," Applied Energy, Elsevier, vol. 278(C).
    10. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    11. Abhishek Gaur & Michael Lacasse, 2022. "Climate Data to Support the Adaptation of Buildings to Climate Change in Canada," Data, MDPI, vol. 7(4), pages 1-22, April.
    12. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    13. Nik, Vahid M. & Hosseini, Mohammad, 2023. "CIRLEM: a synergic integration of Collective Intelligence and Reinforcement learning in Energy Management for enhanced climate resilience and lightweight computation," Applied Energy, Elsevier, vol. 350(C).
    14. Sánchez, M.N. & Soutullo, S. & Olmedo, R. & Bravo, D. & Castaño, S. & Jiménez, M.J., 2020. "An experimental methodology to assess the climate impact on the energy performance of buildings: A ten-year evaluation in temperate and cold desert areas," Applied Energy, Elsevier, vol. 264(C).
    15. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    16. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    17. Filippo Pavanello & Enrica Cian & Marinella Davide & Malcolm Mistry & Talita Cruz & Paula Bezerra & Dattakiran Jagu & Sebastian Renner & Roberto Schaeffer & André F. P. Lucena, 2021. "Air-conditioning and the adaptation cooling deficit in emerging economies," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Mehmood, Sajid & Lizana, Jesus & Núñez-Peiró, Miguel & Maximov, Serguey A. & Friedrich, Daniel, 2022. "Resilient cooling pathway for extremely hot climates in southern Asia," Applied Energy, Elsevier, vol. 325(C).
    19. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Tolga Kara & Ahmet Duran Şahin, 2023. "Implications of Climate Change on Wind Energy Potential," Sustainability, MDPI, vol. 15(20), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.