IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5119-d617654.html
   My bibliography  Save this article

Research on Fresh and Hardened Sealing Slurries with the Addition of Magnesium Regarding Thermal Conductivity for Energy Piles and Borehole Heat Exchangers

Author

Listed:
  • Tomasz Sliwa

    (Laboratory of Geoenergetics AGH, AGH University of Science and Technology in Krakow, al. Adama Mickiewicza 30, 30-059 Krakow, Poland)

  • Tomasz Kowalski

    (Laboratory of Geoenergetics AGH, AGH University of Science and Technology in Krakow, al. Adama Mickiewicza 30, 30-059 Krakow, Poland)

  • Dominik Cekus

    (Laboratory of Geoenergetics AGH, AGH University of Science and Technology in Krakow, al. Adama Mickiewicza 30, 30-059 Krakow, Poland)

  • Aneta Sapińska-Śliwa

    (Laboratory of Geoenergetics AGH, AGH University of Science and Technology in Krakow, al. Adama Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

Currently, renewable energy is increasingly important in the energy sector. One of the so-called renewable energy sources is geothermal energy. The most popular solution implemented by both small and large customers is the consumption of low-temperature geothermal energy using borehole heat exchanger (BHE) systems assisted by geothermal heat pumps. Such an installation can operate regardless of geological conditions, which makes it extremely universal. Borehole heat exchangers are the most important elements of this system, as their design determines the efficiency of the entire heating or heating-and-cooling system. Filling/sealing slurry is amongst the crucial structural elements. In borehole exchangers, reaching the highest possible thermal conductivity of the cement slurry endeavors to improve heat transfer between the rock mass and the heat carrier. The article presents a proposed design for such a sealing slurry. Powdered magnesium was used as an additive to the cement. The approximate cost of powdered magnesium is PLN 70–90 per kg (EUR 15–20/kg). Six different slurry formulations were tested. Magnesium flakes were used in designs A, B, C, and magnesium shavings in D, E and F. The samples differed in the powdered magnesium content BWOC (by weight of cement). The parameters of fresh and hardened sealing slurries were tested, focusing mainly on the thermal conductivity parameter. The highest thermal conductivity values were obtained in design C with the 45% addition of magnesium flakes BWOC.

Suggested Citation

  • Tomasz Sliwa & Tomasz Kowalski & Dominik Cekus & Aneta Sapińska-Śliwa, 2021. "Research on Fresh and Hardened Sealing Slurries with the Addition of Magnesium Regarding Thermal Conductivity for Energy Piles and Borehole Heat Exchangers," Energies, MDPI, vol. 14(16), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5119-:d:617654
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin Luo & Joachim Rohn & Manfred Bayer & Anna Priess, 2013. "Thermal Efficiency Comparison of Borehole Heat Exchangers with Different Drillhole Diameters," Energies, MDPI, vol. 6(8), pages 1-20, August.
    2. Luca Alberti & Adriana Angelotti & Matteo Antelmi & Ivana La Licata, 2017. "A Numerical Study on the Impact of Grouting Material on Borehole Heat Exchangers Performance in Aquifers," Energies, MDPI, vol. 10(5), pages 1-15, May.
    3. Ilayda Berktas & Ali Nejad Ghafar & Patrick Fontana & Ayten Caputcu & Yusuf Menceloglu & Burcu Saner Okan, 2020. "Synergistic Effect of Expanded Graphite-Silane Functionalized Silica as a Hybrid Additive in Improving the Thermal Conductivity of Cementitious Grouts with Controllable Water Uptake," Energies, MDPI, vol. 13(14), pages 1-15, July.
    4. M. M. Mousa & A. M. Bayomy & M. Z. Saghir, 2020. "Experimental and Numerical Study on Energy Piles with Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-21, September.
    5. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    6. Seung-Min Lee & Seung-Hoon Park & Yong-Sung Jang & Eui-Jong Kim, 2021. "Proposition of Design Capacity of Borehole Heat Exchangers for Use in the Schematic-Design Stage," Energies, MDPI, vol. 14(4), pages 1-17, February.
    7. Gaurav Shrestha & Mayumi Yoshioka & Hikari Fujii & Youhei Uchida, 2020. "Evaluation of Suitable Areas to Introduce a Closed-Loop Ground Source Heat Pump System in the Case of a Standard Japanese Detached Residence," Energies, MDPI, vol. 13(17), pages 1-15, August.
    8. Valeria Palomba & Antonino Bonanno & Giovanni Brunaccini & Davide Aloisio & Francesco Sergi & Giuseppe E. Dino & Efstratios Varvaggiannis & Sotirios Karellas & Birgo Nitsch & Andreas Strehlow & André , 2021. "Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis," Energies, MDPI, vol. 14(9), pages 1-28, April.
    9. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    10. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    11. Weidong Lyu & Hefu Pu & Jiannan (Nick) Chen, 2020. "Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger," Energies, MDPI, vol. 13(21), pages 1-17, November.
    12. Aizhao Zhou & Xianwen Huang & Wei Wang & Pengming Jiang & Xinwei Li, 2021. "Thermo-Hydraulic Performance of U-Tube Borehole Heat Exchanger with Different Cross-Sections," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    13. Sangmu Bae & Yujin Nam & Ivor da Cunha, 2019. "Economic Solution of the Tri-Generation System Using Photovoltaic-Thermal and Ground Source Heat Pump for Zero Energy Building (ZEB) Realization," Energies, MDPI, vol. 12(17), pages 1-25, August.
    14. Tian, Heqing & Du, Lichan & Wei, Xiaolan & Deng, Suyan & Wang, Weilong & Ding, Jing, 2017. "Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage," Applied Energy, Elsevier, vol. 204(C), pages 525-530.
    15. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    16. Davide Quaggiotto & Angelo Zarrella & Giuseppe Emmi & Michele De Carli & Luc Pockelé & Jacques Vercruysse & Mario Psyk & Davide Righini & Antonio Galgaro & Dimitrios Mendrinos & Adriana Bernardi, 2019. "Simulation-Based Comparison Between the Thermal Behavior of Coaxial and Double U-Tube Borehole Heat Exchangers," Energies, MDPI, vol. 12(12), pages 1-18, June.
    17. Agnieszka Operacz & Bogusław Bielec & Barbara Tomaszewska & Michał Kaczmarczyk, 2020. "Physicochemical Composition Variability and Hydraulic Conditions in a Geothermal Borehole—The Latest Study in Podhale Basin, Poland," Energies, MDPI, vol. 13(15), pages 1-18, July.
    18. Rodolfo Perego & Sebastian Pera & Antonio Galgaro, 2019. "Techno-Economic Mapping for the Improvement of Shallow Geothermal Management in Southern Switzerland," Energies, MDPI, vol. 12(2), pages 1-24, January.
    19. Aydın, Murat & Sisman, Altug, 2015. "Experimental and computational investigation of multi U-tube boreholes," Applied Energy, Elsevier, vol. 145(C), pages 163-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Seńczuk & Aneta Sapińska-Śliwa & Tomasz Kowalski, 2022. "Utilization of Basalt Dust as Waste Material in Cement Grouts for Geothermal Application," Energies, MDPI, vol. 15(19), pages 1-30, September.
    2. Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    2. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    3. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    4. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    5. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    6. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    7. Krzysztof Seńczuk & Aneta Sapińska-Śliwa & Tomasz Kowalski, 2022. "Utilization of Basalt Dust as Waste Material in Cement Grouts for Geothermal Application," Energies, MDPI, vol. 15(19), pages 1-30, September.
    8. Sihan Zhou & Lijie Zhu & Runan Wan & Tao Zhang & Yongzheng Zhang & Yi Zhan & Fang Wang & Linfeng Zhang & Tian You, 2023. "An Overview of Sandbox Experiment on Ground Heat Exchangers," Sustainability, MDPI, vol. 15(14), pages 1-39, July.
    9. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    10. Gianluca Cadelano & Alessandro Bortolin & Giovanni Ferrarini & Paolo Bison & Giorgia Dalla Santa & Eloisa Di Sipio & Adriana Bernardi & Antonio Galgaro, 2021. "Evaluation of the Effect of Anti-Corrosion Coatings on the Thermal Resistance of Ground Heat Exchangers for Shallow Geothermal Applications," Energies, MDPI, vol. 14(9), pages 1-12, April.
    11. Angelo Zarrella & Giuseppe Emmi & Samantha Graci & Michele De Carli & Matteo Cultrera & Giorgia Dalla Santa & Antonio Galgaro & David Bertermann & Johannes Müller & Luc Pockelé & Giulia Mezzasalma & D, 2017. "Thermal Response Testing Results of Different Types of Borehole Heat Exchangers: An Analysis and Comparison of Interpretation Methods," Energies, MDPI, vol. 10(6), pages 1-18, June.
    12. Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.
    13. Abhishek Anand & Karunesh Kant & Amritanshu Shukla & Chang-Ren Chen & Atul Sharma, 2021. "Thermal Stability and Reliability Test of Some Saturated Fatty Acids for Low and Medium Temperature Thermal Energy Storage," Energies, MDPI, vol. 14(15), pages 1-22, July.
    14. Fan, Jinyang & Liu, Wei & Jiang, Deyi & Chen, Junchao & Ngaha Tiedeu, William & Chen, Jie & JJK, Deaman, 2018. "Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China," Energy, Elsevier, vol. 157(C), pages 31-44.
    15. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    16. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    17. Kawaguchi, Takahiro & Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Nomura, Takahiro, 2020. "Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 276(C).
    18. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    19. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    20. Agnieszka Operacz & Agnieszka Zachora-Buławska & Izabela Strzelecka & Mariusz Buda & Bogusław Bielec & Karolina Migdał & Tomasz Operacz, 2022. "The Standard Geothermal Plant as an Innovative Combined Renewable Energy Resources System: The Case from South Poland," Energies, MDPI, vol. 15(17), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5119-:d:617654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.