IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p801-d101361.html
   My bibliography  Save this article

Thermal Response Testing Results of Different Types of Borehole Heat Exchangers: An Analysis and Comparison of Interpretation Methods

Author

Listed:
  • Angelo Zarrella

    (Department of Industrial Engineering—Applied Physics Section, University of Padova, Via Venezia 1, 35131 Padova, Italy)

  • Giuseppe Emmi

    (Department of Industrial Engineering—Applied Physics Section, University of Padova, Via Venezia 1, 35131 Padova, Italy)

  • Samantha Graci

    (Department of Industrial Engineering—Applied Physics Section, University of Padova, Via Venezia 1, 35131 Padova, Italy)

  • Michele De Carli

    (Department of Industrial Engineering—Applied Physics Section, University of Padova, Via Venezia 1, 35131 Padova, Italy)

  • Matteo Cultrera

    (Department of Geoscience, University of Padova, Via Gradenigo 6, 35131 Padova, Italy)

  • Giorgia Dalla Santa

    (Department of Geoscience, University of Padova, Via Gradenigo 6, 35131 Padova, Italy)

  • Antonio Galgaro

    (Department of Geoscience, University of Padova, Via Gradenigo 6, 35131 Padova, Italy)

  • David Bertermann

    (GeoZentrum Nordbayern, Lehrstuhl für Geologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schloßgarten 5, 91054 Erlangen, Germany)

  • Johannes Müller

    (GeoZentrum Nordbayern, Lehrstuhl für Geologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schloßgarten 5, 91054 Erlangen, Germany)

  • Luc Pockelé

    (Red Srl, Viale dell’Industria 58/B, 35129 Padova, Italy)

  • Giulia Mezzasalma

    (Red Srl, Viale dell’Industria 58/B, 35129 Padova, Italy)

  • Davide Righini

    (Hydra Srl, Via Imperiale 6, Traghetto di Argenta, 44011 Ferrara, Italy)

  • Mario Psyk

    (Rehau AG & Co, Ytterbium 4, 91058 Erlangen-Eltersdorf, Germany)

  • Adriana Bernardi

    (CNR-ISAC, Corso Stati Uniti 4, 35127 Padova, Italy)

Abstract

The design phase of ground source heat pump systems is an extremely important one as many of the decisions made at that time can affect the system’s energy performance as well as installation and operating costs. The current study examined the interpretation of thermal response testing measurements used to evaluate the equivalent ground thermal conductivity and thus to design the system. All the measurements were taken at the same geological site located in Molinella, Bologna (Italy) where a variety of borehole heat exchangers (BHEs) had been installed and investigated within the project Cheap-GSHPs (Cheap and efficient application of reliable Ground Source Heat exchangers and Pumps) of the European Union’s Horizon 2020 research and innovation program. The measurements were initially analyzed in accordance with the common interpretation based on the first-order approximation of the solution for the infinite line source model and then by utilizing the complete solutions of both the infinite line and cylinder source models. An inverse numerical approach based on a detailed model that considers the current geometry of the BHE and the axial heat transfer as well as the effect of weather on the ground surface was also used. Study findings revealed that the best result was generally obtained using the inverse numerical interpretation.

Suggested Citation

  • Angelo Zarrella & Giuseppe Emmi & Samantha Graci & Michele De Carli & Matteo Cultrera & Giorgia Dalla Santa & Antonio Galgaro & David Bertermann & Johannes Müller & Luc Pockelé & Giulia Mezzasalma & D, 2017. "Thermal Response Testing Results of Different Types of Borehole Heat Exchangers: An Analysis and Comparison of Interpretation Methods," Energies, MDPI, vol. 10(6), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:801-:d:101361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin Luo & Joachim Rohn & Manfred Bayer & Anna Priess, 2013. "Thermal Efficiency Comparison of Borehole Heat Exchangers with Different Drillhole Diameters," Energies, MDPI, vol. 6(8), pages 1-20, August.
    2. Paolo Conti, 2016. "Dimensionless Maps for the Validity of Analytical Ground Heat Transfer Models for GSHP Applications," Energies, MDPI, vol. 9(11), pages 1-21, October.
    3. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    4. Zanchini, E. & Lazzari, S. & Priarone, A., 2010. "Improving the thermal performance of coaxial borehole heat exchangers," Energy, Elsevier, vol. 35(2), pages 657-666.
    5. Cimmino, Massimo, 2016. "Fluid and borehole wall temperature profiles in vertical geothermal boreholes with multiple U-tubes," Renewable Energy, Elsevier, vol. 96(PA), pages 137-147.
    6. Zanchini, E. & Lazzari, S. & Priarone, A., 2010. "Effects of flow direction and thermal short-circuiting on the performance of small coaxial ground heat exchangers," Renewable Energy, Elsevier, vol. 35(6), pages 1255-1265.
    7. Witte, Henk J.L., 2013. "Error analysis of thermal response tests," Applied Energy, Elsevier, vol. 109(C), pages 302-311.
    8. Lucia, Umberto & Simonetti, Marco & Chiesa, Giacomo & Grisolia, Giulia, 2017. "Ground-source pump system for heating and cooling: Review and thermodynamic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 867-874.
    9. Cristina Sáez Blázquez & Arturo Farfán Martín & Ignacio Martín Nieto & Pedro Carrasco García & Luis Santiago Sánchez Pérez & Diego González-Aguilera, 2017. "Efficiency Analysis of the Main Components of a Vertical Closed-Loop System in a Borehole Heat Exchanger," Energies, MDPI, vol. 10(2), pages 1-15, February.
    10. Aydın, Murat & Sisman, Altug, 2015. "Experimental and computational investigation of multi U-tube boreholes," Applied Energy, Elsevier, vol. 145(C), pages 163-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Suft & David Bertermann, 2022. "One-Year Monitoring of a Ground Heat Exchanger Using the In Situ Thermal Response Test: An Experimental Approach on Climatic Effects," Energies, MDPI, vol. 15(24), pages 1-15, December.
    2. Li, Min & Zhang, Liwen & Liu, Gang, 2019. "Estimation of thermal properties of soil and backfilling material from thermal response tests (TRTs) for exploiting shallow geothermal energy: Sensitivity, identifiability, and uncertainty," Renewable Energy, Elsevier, vol. 132(C), pages 1263-1270.
    3. Linden Jensen-Page & Fleur Loveridge & Guillermo A. Narsilio, 2019. "Thermal Response Testing of Large Diameter Energy Piles," Energies, MDPI, vol. 12(14), pages 1-25, July.
    4. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    5. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    6. Xuedan Zhang & Tiantian Zhang & Bingxi Li & Yiqiang Jiang, 2019. "Comparison of Four Methods for Borehole Heat Exchanger Sizing Subject to Thermal Response Test Parameter Estimation," Energies, MDPI, vol. 12(21), pages 1-30, October.
    7. Oh, Kwanggeun & Lee, Seokjae & Park, Sangwoo & Han, Shin-In & Choi, Hangseok, 2019. "Field experiment on heat exchange performance of various coaxial-type ground heat exchangers considering construction conditions," Renewable Energy, Elsevier, vol. 144(C), pages 84-96.
    8. Mario Rammler & Hans Schwarz & Jan Wagner & David Bertermann, 2023. "Comparison of Measured and Derived Thermal Conductivities in the Unsaturated Soil Zone of a Large-Scale Geothermal Collector System (LSC)," Energies, MDPI, vol. 16(3), pages 1-21, January.
    9. Gianluca Cadelano & Alessandro Bortolin & Giovanni Ferrarini & Paolo Bison & Giorgia Dalla Santa & Eloisa Di Sipio & Adriana Bernardi & Antonio Galgaro, 2021. "Evaluation of the Effect of Anti-Corrosion Coatings on the Thermal Resistance of Ground Heat Exchangers for Shallow Geothermal Applications," Energies, MDPI, vol. 14(9), pages 1-12, April.
    10. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    11. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    12. Tomislav Kurevija & Adib Kalantar & Marija Macenić & Josipa Hranić, 2019. "Investigation of Steady-State Heat Extraction Rates for Different Borehole Heat Exchanger Configurations from the Aspect of Implementation of New TurboCollector™ Pipe System Design," Energies, MDPI, vol. 12(8), pages 1-17, April.
    13. Peng Li & Peng Guan & Jun Zheng & Bin Dou & Hong Tian & Xinsheng Duan & Hejuan Liu, 2020. "Field Test and Numerical Simulation on Heat Transfer Performance of Coaxial Borehole Heat Exchanger," Energies, MDPI, vol. 13(20), pages 1-19, October.
    14. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    15. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    16. Yoshitaka Sakata & Takao Katsura & Ahmed A. Serageldin & Katsunori Nagano & Motoaki Ooe, 2021. "Evaluating Variability of Ground Thermal Conductivity within a Steep Site by History Matching Underground Distributed Temperatures from Thermal Response Tests," Energies, MDPI, vol. 14(7), pages 1-17, March.
    17. Gigot, Valériane & Francois, Bertrand & Huysmans, Marijke & Gerard, Pierre, 2023. "Monitoring of the thermal plume around a thermally activated borehole heat exchanger and characterization of the ground hydro-geothermal parameters," Renewable Energy, Elsevier, vol. 218(C).
    18. Aneta Sapińska-Śliwa & Tomasz Sliwa & Kazimierz Twardowski & Krzysztof Szymski & Andrzej Gonet & Paweł Żuk, 2020. "Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers," Energies, MDPI, vol. 13(14), pages 1-20, July.
    19. Lihui Zhang & Zhenzhen Chen & Donghui Wen & Xudong Wang & Daqian Zhang & Jun Liang, 2018. "Estimation of the Time-Varying High-Intensity Heat Flux for a Two-Layer Hollow Cylinder," Energies, MDPI, vol. 11(12), pages 1-16, November.
    20. Hans Schwarz & Borja Badenes & Jan Wagner & José Manuel Cuevas & Javier Urchueguía & David Bertermann, 2021. "A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method," Energies, MDPI, vol. 14(9), pages 1-17, May.
    21. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    3. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Davide Quaggiotto & Angelo Zarrella & Giuseppe Emmi & Michele De Carli & Luc Pockelé & Jacques Vercruysse & Mario Psyk & Davide Righini & Antonio Galgaro & Dimitrios Mendrinos & Adriana Bernardi, 2019. "Simulation-Based Comparison Between the Thermal Behavior of Coaxial and Double U-Tube Borehole Heat Exchangers," Energies, MDPI, vol. 12(12), pages 1-18, June.
    5. Luo, Yongqaing & Guo, Hongshan & Meggers, Forrest & Zhang, Ling, 2019. "Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis," Energy, Elsevier, vol. 185(C), pages 1298-1313.
    6. Quirosa, Gonzalo & Torres, Miguel & Becerra, José A. & Jiménez-Espadafor, Francisco J. & Chacartegui, Ricardo, 2023. "Energy analysis of an ultra-low temperature district heating and cooling system with coaxial borehole heat exchangers," Energy, Elsevier, vol. 278(PA).
    7. Dai, Jiacheng & Li, Jingbin & Wang, Tianyu & Zhu, Liying & Tian, Kangjian & Chen, Zhaoting, 2023. "Thermal performance analysis of coaxial borehole heat exchanger using liquid ammonia," Energy, Elsevier, vol. 263(PE).
    8. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    9. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    10. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    11. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    12. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    13. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    14. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    15. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    16. Alshehri, Faisal & Beck, Stephen & Ingham, Derek & Ma, Lin & Pourkashanian, Mohammed, 2021. "Sensitivity analysis of a vertical geothermal heat pump system in a hot dry climate," Renewable Energy, Elsevier, vol. 178(C), pages 785-801.
    17. Javed, Saqib & Spitler, Jeffrey, 2017. "Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers," Applied Energy, Elsevier, vol. 187(C), pages 790-806.
    18. Zanchini, Enzo & Lazzari, Stefano & Priarone, Antonella, 2012. "Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow," Energy, Elsevier, vol. 38(1), pages 66-77.
    19. Alessandro Franco & Paolo Conti, 2020. "Clearing a Path for Ground Heat Exchange Systems: A Review on Thermal Response Test (TRT) Methods and a Geotechnical Routine Test for Estimating Soil Thermal Properties," Energies, MDPI, vol. 13(11), pages 1-21, June.
    20. Oh, Kwanggeun & Lee, Seokjae & Park, Sangwoo & Han, Shin-In & Choi, Hangseok, 2019. "Field experiment on heat exchange performance of various coaxial-type ground heat exchangers considering construction conditions," Renewable Energy, Elsevier, vol. 144(C), pages 84-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:801-:d:101361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.