IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4657-d606279.html
   My bibliography  Save this article

Aggregated World Energy Demand Projections: Statistical Assessment

Author

Listed:
  • Ignacio Mauleón

    (Department of Economics and Business, Universidad Rey Juan Carlos, 28933 Madrid, Spain)

Abstract

The primary purpose of this research is to assess the long-range energy demand assumption made in relevant Roadmaps for the transformation to a low-carbon energy system. A novel interdisciplinary approach is then implemented: a new model is estimated for the aggregated world primary energy demand with long historical time series for world energy, income, and population for the years 1900–2017. The model is used to forecast energy demand in 2050 and assess the uncertainty-derived risk based on the variances of the series and parameters analysed. The results show that large efficiency savings—up to 50% in some cases and never observed before—are assumed in the main Roadmaps. This discrepancy becomes significantly higher when even moderate uncertainty assumptions are taken into account. A discussion on possible future sources of breaks in current patterns of energy supply and demand is also presented, leading to a new conclusion requiring an active political stance to accelerate efficiency savings and lifestyle changes that reduce energy demand, even if energy consumption may be reduced significantly. This will likely include replacing the income-growth paradigm with other criteria based on prosperity or related measures.

Suggested Citation

  • Ignacio Mauleón, 2021. "Aggregated World Energy Demand Projections: Statistical Assessment," Energies, MDPI, vol. 14(15), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4657-:d:606279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Brueckner & Hannes Schwandt, 2015. "Income and Population Growth," Economic Journal, Royal Economic Society, vol. 125(589), pages 1653-1676, December.
    2. de la Croix, David & Docquier, Frederic & Liegeois, Philippe, 2007. "Income growth in the 21st century: Forecasts with an overlapping generations model," International Journal of Forecasting, Elsevier, vol. 23(4), pages 621-635.
    3. Lindh, Thomas & Malmberg, Bo, 2007. "Demographically based global income forecasts up to the year 2050," International Journal of Forecasting, Elsevier, vol. 23(4), pages 553-567.
    4. Mauleón, Ignacio, 2019. "Assessing PV and wind roadmaps: Learning rates, risk, and social discounting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 71-89.
    5. Mauleón, Ignacio, 2019. "Optimizing individual renewable energies roadmaps: Criteria, methods, and end targets," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Sonja Simon & Tobias Naegler & Hans Christian Gils, 2018. "Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America," Energies, MDPI, vol. 11(4), pages 1-26, April.
    7. Tao Hong & Pierre Pinson & Yi Wang & Rafal Weron & Dazhi Yang & Hamidreza Zareipour, 2020. "Energy forecasting: A review and outlook," WORking papers in Management Science (WORMS) WORMS/20/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    8. Elizabeth Stanton, 2007. "The Human Development Index: A History," Working Papers wp127, Political Economy Research Institute, University of Massachusetts at Amherst.
    9. McKibbin, Warwick J. & Pearce, David & Stegman, Alison, 2007. "Long term projections of carbon emissions," International Journal of Forecasting, Elsevier, vol. 23(4), pages 637-653.
    10. Prskawetz, A. & Kogel, T. & Sanderson, W.C. & Scherbov, S., 2007. "The effects of age structure on economic growth: An application of probabilistic forecasting to India," International Journal of Forecasting, Elsevier, vol. 23(4), pages 587-602.
    11. Granger, Clive W.J. & Jeon, Yongil, 2007. "Long-term forecasting and evaluation," International Journal of Forecasting, Elsevier, vol. 23(4), pages 539-551.
    12. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Ahlburg, Dennis & Lindh, Thomas, 2007. "Long-run income forecasting," International Journal of Forecasting, Elsevier, vol. 23(4), pages 533-538.
    14. Gregor Semieniuk & Lance Taylor & Armon Rezai & Duncan K. Foley, 2021. "Plausible energy demand patterns in a growing global economy with climate policy," Nature Climate Change, Nature, vol. 11(4), pages 313-318, April.
    15. Lindberg, K.B. & Seljom, P. & Madsen, H. & Fischer, D. & Korpås, M., 2019. "Long-term electricity load forecasting: Current and future trends," Utilities Policy, Elsevier, vol. 58(C), pages 102-119.
    16. David Font Vivanco & Serenella Sala & Will McDowall, 2018. "Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    17. Marc Fleurbaey, 2009. "Beyond GDP: The Quest for a Measure of Social Welfare," Journal of Economic Literature, American Economic Association, vol. 47(4), pages 1029-1075, December.
    18. Samuel Bowles, 1998. "Endogenous Preferences: The Cultural Consequences of Markets and Other Economic Institutions," Journal of Economic Literature, American Economic Association, vol. 36(1), pages 75-111, March.
    19. Joseph R. Burger & James H. Brown & John W. Day & Tatiana P. Flanagan & Eric D. Roy, 2019. "The Central Role of Energy in the Urban Transition: Global Challenges for Sustainability," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-13, March.
    20. Boßmann, T. & Staffell, I., 2015. "The shape of future electricity demand: Exploring load curves in 2050s Germany and Britain," Energy, Elsevier, vol. 90(P2), pages 1317-1333.
    21. Kraay, Aart & Monokroussos, George, 1999. "Growth forecasts using time series and growth models," Policy Research Working Paper Series 2224, The World Bank.
    22. Andrew Hook & Victor Court & Benjamin K Sovacool & Steven Sorrell, 2020. "A Systematic Review of the Energy and Climate Impacts of Teleworking," Working Papers hal-03192905, HAL.
    23. Krzysztof Przystupa & Mykola Beshley & Mykola Kaidan & Volodymyr Andrushchak & Ivan Demydov & Orest Kochan & Daniel Pieniak, 2020. "Methodology and Software Tool for Energy Consumption Evaluation and Optimization in Multilayer Transport Optical Networks," Energies, MDPI, vol. 13(23), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    2. Bloom, David E. & Canning, David & Fink, Gunther & Finlay, Jocelyn E., 2007. "Does age structure forecast economic growth?," International Journal of Forecasting, Elsevier, vol. 23(4), pages 569-585.
    3. Burleyson, Casey D. & Rahman, Aowabin & Rice, Jennie S. & Smith, Amanda D. & Voisin, Nathalie, 2021. "Multiscale effects masked the impact of the COVID-19 pandemic on electricity demand in the United States," Applied Energy, Elsevier, vol. 304(C).
    4. Tadeusz A. Grzeszczyk & Michal K. Grzeszczyk, 2022. "Justifying Short-Term Load Forecasts Obtained with the Use of Neural Models," Energies, MDPI, vol. 15(5), pages 1-20, March.
    5. repec:cbh:journl:v:14:y:2015:i:2:p:89-127 is not listed on IDEAS
    6. Emese Kreiszné Hudák & Péter Varga & Viktor Várpalotai, 2015. "The macroeconomic impacts of demographic changes in Hungary in the context of the European Union," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 14(2), pages 89-127.
    7. Charles A. S. Hall, 2022. "The 50th Anniversary of The Limits to Growth : Does It Have Relevance for Today’s Energy Issues?," Energies, MDPI, vol. 15(14), pages 1-13, July.
    8. Roger Fouquet & Ralph Hippe, 2022. "Twin Transitions of Decarbonisation and Digitalisation: A Historical Perspective on Energy and Information in European Economies," Working Papers 08-22, Association Française de Cliométrie (AFC).
    9. Mattauch, Linus & Hepburn, Cameron & Spuler, Fiona & Stern, Nicholas, 2022. "The economics of climate change with endogenous preferences," Resource and Energy Economics, Elsevier, vol. 69(C).
    10. Seljom, Pernille & Rosenberg, Eva & Schäffer, Linn Emelie & Fodstad, Marte, 2020. "Bidirectional linkage between a long-term energy system and a short-term power market model," Energy, Elsevier, vol. 198(C).
    11. Mattauch, Linus & Hepburn, Cameron, 2016. "Climate policy when preferences are endogenous – and sometimes they are," INET Oxford Working Papers 2016-04, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    12. Kalhori, M. Rostam Niakan & Emami, I. Taheri & Fallahi, F. & Tabarzadi, M., 2022. "A data-driven knowledge-based system with reasoning under uncertain evidence for regional long-term hourly load forecasting," Applied Energy, Elsevier, vol. 314(C).
    13. Caroline Gerschlager, 2012. "Agents of change," Journal of Evolutionary Economics, Springer, vol. 22(3), pages 413-441, July.
    14. Colelli, Francesco Pietro & Wing, Ian Sue & De Cian, Enrica, 2023. "Intensive and extensive margins of the peak load: Measuring adaptation with mixed frequency panel data," Energy Economics, Elsevier, vol. 126(C).
    15. Karakaya, Etem & Alataş, Sedat & Erkara, Elif & Mert, Betül & Akdoğan, Tuğba & Hiçyılmaz, Burcu, 2024. "The rebound effect of material and energy efficiency for the EU and its major trading partners," Energy Economics, Elsevier, vol. 134(C).
    16. Shimoda, Yoshiyuki & Sugiyama, Minami & Nishimoto, Ryuya & Momonoki, Takashi, 2021. "Evaluating decarbonization scenarios and energy management requirement for the residential sector in Japan through bottom-up simulations of energy end-use demand in 2050," Applied Energy, Elsevier, vol. 303(C).
    17. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Mogues, Tewodaj & Carter, Michael R., 2003. "Social Capital and Incentive Compatibility: Modelling the Accumulation and Use of Social Collateral," Staff Paper Series 460, University of Wisconsin, Agricultural and Applied Economics.
    19. Nicolai J. Foss, 2012. "Linking Ethics and Economic Growth: a Comment on Hunt," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 6(3), September.
    20. Heineck, Guido & Süssmuth, Bernd, 2013. "A different look at Lenin’s legacy: Social capital and risk taking in the Two Germanies," Journal of Comparative Economics, Elsevier, vol. 41(3), pages 789-803.
    21. Engelhardt, Sebastian v. & Freytag, Andreas, 2013. "Institutions, culture, and open source," Journal of Economic Behavior & Organization, Elsevier, vol. 95(C), pages 90-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4657-:d:606279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.