IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/2224.html
   My bibliography  Save this paper

Growth forecasts using time series and growth models

Author

Listed:
  • Kraay, Aart
  • Monokroussos, George

Abstract

The authors consider two alternative methods of forecasting real per capita GDP at various horizons: 1) univariate time series models estimated country by country; and 2) cross-country growth regressions. They evaluate the out-of-sample forecasting performance of both approaches for a large sample of industrial and developing countries. They find only modest differences between the two approaches. In almost all cases, differences in median (across countries) forecast performance are small relative to the large discrepancies between forecasts and actual outcomes. Interestingly, the performance of both models is similar to that of forecasts generated by the World Bank's Unified Survey. The results do not provide a compelling case for one approach over another, but they do indicate that there are potential gains from combining time series and growth-regression-based forecasting approaches.

Suggested Citation

  • Kraay, Aart & Monokroussos, George, 1999. "Growth forecasts using time series and growth models," Policy Research Working Paper Series 2224, The World Bank.
  • Handle: RePEc:wbk:wbrwps:2224
    as

    Download full text from publisher

    File URL: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2000/05/26/000094946_99120905324244/Rendered/PDF/multi_page.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. E. P. Box & G. C. Tiao, 1976. "Comparison of Forecast and Actuality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(3), pages 195-200, November.
    2. Vogelsang, Timothy J., 1997. "Wald-Type Tests for Detecting Breaks in the Trend Function of a Dynamic Time Series," Econometric Theory, Cambridge University Press, vol. 13(6), pages 818-848, December.
    3. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809.
    4. Diebold, Francis X & Kilian, Lutz, 2000. "Unit-Root Tests Are Useful for Selecting Forecasting Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 265-273, July.
    5. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    6. Diebold, Francis X., 1989. "Forecast combination and encompassing: Reconciling two divergent literatures," International Journal of Forecasting, Elsevier, vol. 5(4), pages 589-592.
    7. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    8. Mr. Michael J. Artis, 1996. "How Accurate Are the Imf's Short-Term Forecasts? Another Examination of the World Economic Outlook," IMF Working Papers 1996/089, International Monetary Fund.
    9. repec:cup:etheor:v:13:y:1997:i:6:p:818-49 is not listed on IDEAS
    10. Clements, Michael P. & Hendry, David F., 1998. "Forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 14(1), pages 111-131, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bloom, David E. & Canning, David & Fink, Gunther & Finlay, Jocelyn E., 2007. "Does age structure forecast economic growth?," International Journal of Forecasting, Elsevier, vol. 23(4), pages 569-585.
    2. Ahlburg, Dennis & Lindh, Thomas, 2007. "Long-run income forecasting," International Journal of Forecasting, Elsevier, vol. 23(4), pages 533-538.
    3. Ianchovichina, Elena & Kacker, Pooja, 2005. "Growth trends in the developing world : country forecasts and determinants," Policy Research Working Paper Series 3775, The World Bank.
    4. Qin, Duo & Cagas, Marie Anne & Ducanes, Geoffrey & Magtibay-Ramos, Nedelyn & Quising, Pilipinas, 2008. "Automatic leading indicators versus macroeconometric structural models: A comparison of inflation and GDP growth forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 399-413.
    5. Ignacio Mauleón, 2021. "Aggregated World Energy Demand Projections: Statistical Assessment," Energies, MDPI, vol. 14(15), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    2. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
    3. Massimiliano Marcellino, "undated". "Instability and non-linearity in the EMU," Working Papers 211, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    4. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    5. Guidolin, Massimo & Timmermann, Allan, 2009. "Forecasts of US short-term interest rates: A flexible forecast combination approach," Journal of Econometrics, Elsevier, vol. 150(2), pages 297-311, June.
    6. Marc Brisson & Bryan Campbell & John W. Galbraith, 2001. "Forecasting Some Low-Predictability Time Series Using Diffusion Indices," CIRANO Working Papers 2001s-46, CIRANO.
    7. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    8. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
    9. Lindh, Thomas & Malmberg, Bo, 2007. "Demographically based global income forecasts up to the year 2050," International Journal of Forecasting, Elsevier, vol. 23(4), pages 553-567.
    10. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    11. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    12. repec:lan:wpaper:470 is not listed on IDEAS
    13. Massimiliano Marcellino, "undated". "Forecast pooling for short time series of macroeconomic variables," Working Papers 212, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    14. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    15. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    16. Hendry, David F. & Hubrich, Kirstin, 2006. "Forecasting economic aggregates by disaggregates," Working Paper Series 589, European Central Bank.
    17. Yvon Fauvel & Alain Paquet & Christian Zimmermann, 1999. "A Survey on Interest Rate Forecasting," Cahiers de recherche CREFE / CREFE Working Papers 87, CREFE, Université du Québec à Montréal.
    18. Alberto Baffigi & Roberto Golinelli & Giuseppe Parigi, 2002. "Real-time GDP forecasting in the euro area," Temi di discussione (Economic working papers) 456, Bank of Italy, Economic Research and International Relations Area.
    19. Roberto Tatiwa Ferreira & Herman Bierens & Ivan Castelar, 2005. "Forecasting Quarterly Brazilian GDP Growth Rate With Linear and NonLinear Diffusion Index Models," Economia, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics], vol. 6(3), pages 261-292.
    20. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    21. Timmermann, Allan & Patton, Andrew, 2003. "Properties of Optimal Forecasts," CEPR Discussion Papers 4037, C.E.P.R. Discussion Papers.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:2224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.