IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4175-d592007.html
   My bibliography  Save this article

Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Atkinson Cycle with Nonlinear Variation of Working Fluid’s Specific Heat

Author

Listed:
  • Shuangshuang Shi

    (Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
    School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China)

  • Yanlin Ge

    (Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
    School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China)

  • Lingen Chen

    (Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
    School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China)

  • Huijun Feng

    (Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
    School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China)

Abstract

Considering nonlinear variation of working fluid’s specific heat with its temperature, finite-time thermodynamic theory is applied to analyze and optimize the characteristics of an irreversible Atkinson cycle. Through numerical calculations, performance relationships between cycle dimensionless power density versus compression ratio and dimensionless power density versus thermal efficiency are obtained, respectively. When the design parameters take certain specific values, the performance differences of reversible, endoreversible and irreversible Atkinson cycles are compared. The maximum specific volume ratio, maximum pressure ratio, and thermal efficiency under the conditions of the maximum power output and maximum power density are compared. Based on NSGA-II, the single-, bi-, tri-, and quadru-objective optimizations are performed when the compression ratio is used as the optimization variable, and the cycle dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density are used as the optimization objectives. The deviation indexes are obtained based on LINMAP, TOPSIS, and Shannon entropy solutions under different combinations of optimization objectives. By comparing the deviation indexes of bi-, tri- and quadru-objective optimization and the deviation indexes of single-objective optimizations based on maximum power output, maximum thermal efficiency, maximum ecological function and maximum power density, it is found that the deviation indexes of multi-objective optimization are smaller, and the solution of multi-objective optimization is desirable. The comparison results show that when the LINMAP solution is optimized with the dimensionless power output, thermal efficiency, and dimensionless power density as the objective functions, the deviation index is 0.1247, and this optimization objective combination is the most ideal.

Suggested Citation

  • Shuangshuang Shi & Yanlin Ge & Lingen Chen & Huijun Feng, 2021. "Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Atkinson Cycle with Nonlinear Variation of Working Fluid’s Specific Heat," Energies, MDPI, vol. 14(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4175-:d:592007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ge, Yanlin & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Performance of an Atkinson cycle with heat transfer, friction and variable specific-heats of the working fluid," Applied Energy, Elsevier, vol. 83(11), pages 1210-1221, November.
    2. Ge, Yanlin & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Reciprocating heat-engine cycles," Applied Energy, Elsevier, vol. 81(4), pages 397-408, August.
    3. Ahmadi, Mohammad H. & Jokar, Mohammad Ali & Ming, Tingzhen & Feidt, Michel & Pourfayaz, Fathollah & Astaraei, Fatemeh Razi, 2018. "Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach," Energy, Elsevier, vol. 144(C), pages 707-722.
    4. Mathias Scheunert & Robin Masser & Abdellah Khodja & Raphael Paul & Karsten Schwalbe & Andreas Fischer & Karl Heinz Hoffmann, 2020. "Power-Optimized Sinusoidal Piston Motion and Its Performance Gain for an Alpha-Type Stirling Engine with Limited Regeneration," Energies, MDPI, vol. 13(17), pages 1-19, September.
    5. Chenqi Tang & Lingen Chen & Huijun Feng & Wenhua Wang & Yanlin Ge, 2020. "Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs," Energies, MDPI, vol. 13(12), pages 1-21, June.
    6. Wu, Heng & Ge, Yanlin & Chen, Lingen & Feng, Huijun, 2021. "Power, efficiency, ecological function and ecological coefficient of performance optimizations of irreversible Diesel cycle based on finite piston speed," Energy, Elsevier, vol. 216(C).
    7. Lingen Chen & Kang Ma & Huijun Feng & Yanlin Ge, 2020. "Optimal Configuration of a Gas Expansion Process in a Piston-Type Cylinder with Generalized Convective Heat Transfer Law," Energies, MDPI, vol. 13(12), pages 1-20, June.
    8. Zhao, Yingru & Chen, Jincan, 2006. "Performance analysis and parametric optimum criteria of an irreversible Atkinson heat-engine," Applied Energy, Elsevier, vol. 83(8), pages 789-800, August.
    9. Hu, Shuozhuo & Li, Jian & Yang, Fubin & Yang, Zhen & Duan, Yuanyuan, 2020. "Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences," Energy, Elsevier, vol. 203(C).
    10. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).
    11. Lin, Jiann-Chang & Hou, Shuhn-Shyurng, 2007. "Influence of heat loss on the performance of an air-standard Atkinson cycle," Applied Energy, Elsevier, vol. 84(9), pages 904-920, September.
    12. Kapil Patodi & Govind Maheshwari, 2012. "Performance analysis of an Atkinson cycle with variable specific heats of the working fluid under maximum efficient power conditions," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 8(4), pages 289-294, May.
    13. Lingen Chen & Chenqi Tang & Huijun Feng & Yanlin Ge, 2020. "Power, Efficiency, Power Density and Ecological Function Optimization for an Irreversible Modified Closed Variable-Temperature Reservoir Regenerative Brayton Cycle with One Isothermal Heating Process," Energies, MDPI, vol. 13(19), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Ecological function performance analysis and multi-objective optimization for an endoreversible four-reservoir chemical pump," Energy, Elsevier, vol. 282(C).
    2. Huijun Feng & Wei Tang & Lingen Chen & Junchao Shi & Zhixiang Wu, 2021. "Multi-Objective Constructal Optimization for Marine Condensers," Energies, MDPI, vol. 14(17), pages 1-18, September.
    3. Hongwei Zhu & Lingen Chen & Yanlin Ge & Shuangshuang Shi & Huijun Feng, 2022. "Multi-Objective Constructal Design for Square Heat-Generation Body with “Arrow-Shaped” High-Thermal-Conductivity Channel," Energies, MDPI, vol. 15(14), pages 1-15, July.
    4. Pengchao Zang & Lingen Chen & Yanlin Ge, 2022. "Maximizing Efficient Power for an Irreversible Porous Medium Cycle with Nonlinear Variation of Working Fluid’s Specific Heat," Energies, MDPI, vol. 15(19), pages 1-12, September.
    5. Ge, Yanlin & Wu, Heng & Chen, Lingen & Feng, Huijun & Xie, Zhihui, 2023. "Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle," Energy, Elsevier, vol. 270(C).
    6. Raphael Paul & Karl Heinz Hoffmann, 2021. "A Class of Reduced-Order Regenerator Models," Energies, MDPI, vol. 14(21), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengchao Zang & Lingen Chen & Yanlin Ge, 2022. "Maximizing Efficient Power for an Irreversible Porous Medium Cycle with Nonlinear Variation of Working Fluid’s Specific Heat," Energies, MDPI, vol. 15(19), pages 1-12, September.
    2. Ge, Yanlin & Wu, Heng & Chen, Lingen & Feng, Huijun & Xie, Zhihui, 2023. "Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle," Energy, Elsevier, vol. 270(C).
    3. Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power output of endoreversible non-isothermal chemical engine via linear irreversible thermodynamics," Energy, Elsevier, vol. 255(C).
    4. Jin, Qinglong & Xia, Shaojun & Chen, Lingen, 2023. "A modified recompression S–CO2 Brayton cycle and its thermodynamic optimization," Energy, Elsevier, vol. 263(PE).
    5. Chen, Lingen & Xia, Shaojun, 2023. "Maximum work configuration for irreversible finite-heat-capacity source engines by applying averaged-optimal-control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    6. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    7. Lingen Chen & Kang Ma & Huijun Feng & Yanlin Ge, 2020. "Optimal Configuration of a Gas Expansion Process in a Piston-Type Cylinder with Generalized Convective Heat Transfer Law," Energies, MDPI, vol. 13(12), pages 1-20, June.
    8. Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power of irreversible multistage chemical engine with linear mass transfer law using HJB theory," Energy, Elsevier, vol. 261(PB).
    9. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    10. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid," Energy, Elsevier, vol. 282(C).
    11. Chenqi Tang & Lingen Chen & Huijun Feng & Wenhua Wang & Yanlin Ge, 2020. "Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs," Energies, MDPI, vol. 13(12), pages 1-21, June.
    12. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    13. Cruz-Peragón, F. & Gómez-de la Cruz, F.J. & Palomar-Carnicero, J.M. & López-García, R., 2022. "Optimal design of a hybrid ground source heat pump for an official building with thermal load imbalance and limited space for the ground heat exchanger," Renewable Energy, Elsevier, vol. 195(C), pages 381-394.
    14. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    15. Huijun Feng & Wei Tang & Lingen Chen & Junchao Shi & Zhixiang Wu, 2021. "Multi-Objective Constructal Optimization for Marine Condensers," Energies, MDPI, vol. 14(17), pages 1-18, September.
    16. Liu, Qi & Guo, Tao & Fu, Jianqin & Dai, Hongliang & Liu, Jingping, 2022. "Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine," Energy, Elsevier, vol. 238(PB).
    17. Feng, Yong-qiang & Wang, Yu & Yao, Lin & Xu, Jing-wei & Zhang, Fei-yang & He, Zhi-xia & Wang, Qian & Ma, Jian-long, 2023. "Parametric analysis and thermal-economical optimization of a parallel dual pressure evaporation and two stage regenerative organic Rankine cycle using mixture working fluids," Energy, Elsevier, vol. 263(PA).
    18. Xu, Zhaoping & Chang, Siqin, 2010. "Prototype testing and analysis of a novel internal combustion linear generator integrated power system," Applied Energy, Elsevier, vol. 87(4), pages 1342-1348, April.
    19. Niu, Jintao & Wang, Jiansheng & Liu, Xueling, 2023. "Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector," Energy, Elsevier, vol. 282(C).
    20. Zhang, Yuanzhe & Liu, Pei & Li, Zheng, 2023. "Gas turbine off-design behavior modelling and operation windows analysis under different ambient conditions," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4175-:d:592007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.