IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipap290-302.html
   My bibliography  Save this article

A novel renewable energy selection model for United Nations' sustainable development goals

Author

Listed:
  • Büyüközkan, Gülçin
  • Karabulut, Yağmur
  • Mukul, Esin

Abstract

In 2015, the United Nations announced the new Sustainable Development Goals (SDGs) to safeguard the earth and end poverty as the new global sustainable development agenda. One of these SDGs, Goal #7, is about affordable and clean energy. Despite the importance, there are few tools that guide policy-makers in aligning their domestic policies with these SDGs. The paper addresses this research gap and introduces a numerical decision-support method for identifying the most suitable renewable energy source (RES). RES selection according to SDGs can be a challenge for decision makers. This article presents an integrated multi-criteria decision-making (MCDM) method that is based on hesitant fuzzy linguistic (HFL) term set. The decision criteria are weighed with HFL Analytic Hierarchy Process (AHP), and the most appropriate RES alternative is chosen with the HFL COmplex PRoportional ASsessment (COPRAS) technique. The value of the method is demonstrated on a case from Turkey, and a comparative analysis. This approach constitutes a novelty by proposing a numerical model for SDGs that combines AHP and COPRAS in a HFL environment with group decision-making for the first time. The method can help policy-makers in better structuring local energy policies with regard to global efforts in a developing country setting.

Suggested Citation

  • Büyüközkan, Gülçin & Karabulut, Yağmur & Mukul, Esin, 2018. "A novel renewable energy selection model for United Nations' sustainable development goals," Energy, Elsevier, vol. 165(PA), pages 290-302.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:290-302
    DOI: 10.1016/j.energy.2018.08.215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Fuso Nerini & Julia Tomei & Long Seng To & Iwona Bisaga & Priti Parikh & Mairi Black & Aiduan Borrion & Catalina Spataru & Vanesa Castán Broto & Gabrial Anandarajah & Ben Milligan & Yacob Mu, 2018. "Mapping synergies and trade-offs between energy and the Sustainable Development Goals," Nature Energy, Nature, vol. 3(1), pages 10-15, January.
    2. Cinar, Didem & Kayakutlu, Gulgun & Daim, Tugrul, 2010. "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," Energy, Elsevier, vol. 35(4), pages 1724-1729.
    3. Çelikbilek, Yakup & Tüysüz, Fatih, 2016. "An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources," Energy, Elsevier, vol. 115(P1), pages 1246-1258.
    4. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    5. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    6. Kahraman, Cengiz & Kaya, İhsan & Cebi, Selcuk, 2009. "A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process," Energy, Elsevier, vol. 34(10), pages 1603-1616.
    7. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    8. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    9. Ebru Turanoglu Bekar & Mehmet Cakmakci & Cengiz Kahraman, 2016. "Fuzzy COPRAS method for performance measurement in total productive maintenance: a comparative analysis," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 17(5), pages 663-684, September.
    10. Bebbington, Jan & Brown, Judy & Frame, Bob, 2007. "Accounting technologies and sustainability assessment models," Ecological Economics, Elsevier, vol. 61(2-3), pages 224-236, March.
    11. Onar, Sezi Cevik & Oztaysi, Basar & Otay, İrem & Kahraman, Cengiz, 2015. "Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets," Energy, Elsevier, vol. 90(P1), pages 274-285.
    12. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2016. "Hesitant analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 250(2), pages 602-614.
    13. David Griggs & Mark Stafford-Smith & Owen Gaffney & Johan Rockström & Marcus C. Öhman & Priya Shyamsundar & Will Steffen & Gisbert Glaser & Norichika Kanie & Ian Noble, 2013. "Sustainable development goals for people and planet," Nature, Nature, vol. 495(7441), pages 305-307, March.
    14. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    15. Ahmadi, Mohammad H. & Jokar, Mohammad Ali & Ming, Tingzhen & Feidt, Michel & Pourfayaz, Fathollah & Astaraei, Fatemeh Razi, 2018. "Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach," Energy, Elsevier, vol. 144(C), pages 707-722.
    16. S. Alonso & E. Herrera-Viedma & F. Chiclana & F. Herrera, 2009. "Individual And Social Strategies To Deal With Ignorance Situations In Multi-Person Decision Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 313-333.
    17. Çolak, Murat & Kaya, İhsan, 2017. "Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 840-853.
    18. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    19. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    20. Read, Laura & Madani, Kaveh & Mokhtari, Soroush & Hanks, Catherine, 2017. "Stakeholder-driven multi-attribute analysis for energy project selection under uncertainty," Energy, Elsevier, vol. 119(C), pages 744-753.
    21. Karatas, Mumtaz & Sulukan, Egemen & Karacan, Ilknur, 2018. "Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology," Energy, Elsevier, vol. 153(C), pages 890-912.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Songrui Li & Yitang Hu, 2022. "A Multi-Criteria Framework to Evaluate the Sustainability of Renewable Energy: A 2-Tuple Linguistic Grey Relation Model from the Perspective of the Prospect Theory," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    2. Esra Karaka & Ozan Veli Y ld ran, 2019. "Evaluation of Renewable Energy Alternatives for Turkey via Modified Fuzzy AHP," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 31-39.
    3. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    4. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    5. Pratibha Rani & Jabir Ali & Raghunathan Krishankumar & Arunodaya Raj Mishra & Fausto Cavallaro & Kattur S. Ravichandran, 2021. "An Integrated Single-Valued Neutrosophic Combined Compromise Solution Methodology for Renewable Energy Resource Selection Problem," Energies, MDPI, vol. 14(15), pages 1-23, July.
    6. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    7. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    8. Büyüközkan, Gülçin & Güleryüz, Sezin, 2017. "Evaluation of Renewable Energy Resources in Turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations," Energy, Elsevier, vol. 123(C), pages 149-163.
    9. Çelikbilek, Yakup & Tüysüz, Fatih, 2016. "An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources," Energy, Elsevier, vol. 115(P1), pages 1246-1258.
    10. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    11. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    12. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    14. Wang, Ni & Heijnen, Petra W. & Imhof, Pieter J., 2020. "A multi-actor perspective on multi-objective regional energy system planning," Energy Policy, Elsevier, vol. 143(C).
    15. Zhang, Ling & Zhou, Peng & Newton, Sidney & Fang, Jian-xin & Zhou, De-qun & Zhang, Lu-ping, 2015. "Evaluating clean energy alternatives for Jiangsu, China: An improved multi-criteria decision making method," Energy, Elsevier, vol. 90(P1), pages 953-964.
    16. Hashemizadeh, Ali & Ju, Yanbing & Bamakan, Seyed Mojtaba Hosseini & Le, Hoang Phong, 2021. "Renewable energy investment risk assessment in belt and road initiative countries under uncertainty conditions," Energy, Elsevier, vol. 214(C).
    17. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    18. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    19. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    20. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:290-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.