IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v81y2005i4p397-408.html
   My bibliography  Save this article

Reciprocating heat-engine cycles

Author

Listed:
  • Ge, Yanlin
  • Chen, Lingen
  • Sun, Fengrui
  • Wu, Chih

Abstract

The performance of a generalized irreversible reciprocating heat-engine cycle model consisting of two heating branches, two cooling branches and two adiabatic branches with heat-transfer loss and friction-like term loss was analyzed using finite-time thermodynamics. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between the power output and the efficiency of the cycle are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of the cycle process on the performances of the cycles using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson, Brayton, Dual and Miller cycles.

Suggested Citation

  • Ge, Yanlin & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Reciprocating heat-engine cycles," Applied Energy, Elsevier, vol. 81(4), pages 397-408, August.
  • Handle: RePEc:eee:appene:v:81:y:2005:i:4:p:397-408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00130-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lingen & Sun, Fengrui & Wu, Chih, 2004. "Optimal performance of an irreversible dual-cycle," Applied Energy, Elsevier, vol. 79(1), pages 3-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lingen & Zhang, Wanli & Sun, Fengrui, 2007. "Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles," Applied Energy, Elsevier, vol. 84(5), pages 512-525, May.
    2. Ge, Yanlin & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Performance of an Atkinson cycle with heat transfer, friction and variable specific-heats of the working fluid," Applied Energy, Elsevier, vol. 83(11), pages 1210-1221, November.
    3. Fenig, Guidon & Gallipoli, Giovanni & Halevy, Yoram, 2015. "Complementarity in the Private Provision of Public Goods by Homo Pecuniarius and Homo Behavioralis," Microeconomics.ca working papers yoram_halevy-2015-21, Vancouver School of Economics, revised 02 May 2016.
    4. Shuangshuang Shi & Yanlin Ge & Lingen Chen & Huijun Feng, 2021. "Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Atkinson Cycle with Nonlinear Variation of Working Fluid’s Specific Heat," Energies, MDPI, vol. 14(14), pages 1-23, July.
    5. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2014. "The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine," Energy, Elsevier, vol. 78(C), pages 266-275.
    6. Ge, Yanlin & Wu, Heng & Chen, Lingen & Feng, Huijun & Xie, Zhihui, 2023. "Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle," Energy, Elsevier, vol. 270(C).
    7. Zhao, Yingru & Chen, Jincan, 2006. "Performance analysis and parametric optimum criteria of an irreversible Atkinson heat-engine," Applied Energy, Elsevier, vol. 83(8), pages 789-800, August.
    8. Xu, Zhaoping & Chang, Siqin, 2010. "Prototype testing and analysis of a novel internal combustion linear generator integrated power system," Applied Energy, Elsevier, vol. 87(4), pages 1342-1348, April.
    9. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    2. Ust, Yasin & Sahin, Bahri & Sogut, Oguz Salim, 2005. "Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion," Applied Energy, Elsevier, vol. 82(1), pages 23-39, September.
    3. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    4. Gonca, Guven & Sahin, Bahri & Ust, Yasin, 2013. "Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version," Energy, Elsevier, vol. 54(C), pages 285-290.
    5. Lin, Jiann-Chang & Hou, Shuhn-Shyurng, 2007. "Influence of heat loss on the performance of an air-standard Atkinson cycle," Applied Energy, Elsevier, vol. 84(9), pages 904-920, September.
    6. Ust, Yasin & Arslan, Feyyaz & Ozsari, Ibrahim & Cakir, Mehmet, 2015. "Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria," Energy, Elsevier, vol. 90(P1), pages 552-559.
    7. Ust, Yasin & Sahin, Bahri & Kodal, Ali, 2007. "Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion," Applied Energy, Elsevier, vol. 84(11), pages 1079-1091, November.
    8. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
    9. Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
    10. Ge, Yanlin & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Performance of an Atkinson cycle with heat transfer, friction and variable specific-heats of the working fluid," Applied Energy, Elsevier, vol. 83(11), pages 1210-1221, November.
    11. Al-Sarkhi, A. & Jaber, J.O. & Probert, S.D., 2006. "Efficiency of a Miller engine," Applied Energy, Elsevier, vol. 83(4), pages 343-351, April.
    12. Al-Sarkhi, A. & Jaber, J.O. & Abu-Qudais, M. & Probert, S.D., 2006. "Effects of friction and temperature-dependent specific-heat of the working fluid on the performance of a Diesel-engine," Applied Energy, Elsevier, vol. 83(2), pages 153-165, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:81:y:2005:i:4:p:397-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.