IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222029012.html
   My bibliography  Save this article

A modified recompression S–CO2 Brayton cycle and its thermodynamic optimization

Author

Listed:
  • Jin, Qinglong
  • Xia, Shaojun
  • Chen, Lingen

Abstract

A modified recompression S–CO2 Brayton cycle (RCSCBC) that combines advantages of the preheated S–CO2 Brayton cycle (PSCBC) is proposed to recovery the gas turbine waste heat. The modified RCSCBC cycle model considers finite temperature difference heat transfer between heat reservoir and working fluid, irreversible compression, irreversible expansion and other irreversibility losses. It is established by using finite time thermodynamics. Influences of various parameters on net power output (NPO) and thermal efficiency (TEF) of the cycle are analyzed. Performances of the modified RCSCBC are compared with those of the unmodified RCSCBC and the PSCBC. Performance optimizations are performed by optimizing diversion coefficients and heat conductance distributions among heat exchanges. The results show that the first diversion coefficient is the main factor affecting TEF, and there are optimal first diversion coefficient and pressure ratio to maximize the cycle TEF; the second diversion coefficient is the main factor affecting the NPO, and there is an optimal second diversion coefficient to maximize the NPO. Compared with unmodified RCSCBC, NPO of the modified RCSCBC can be increased by 14.34%, and TEF can be increased by 10.89%. Compared with PSCBC, NPO can be increased by 14.20%, and TEF can be increased by 16.60%.

Suggested Citation

  • Jin, Qinglong & Xia, Shaojun & Chen, Lingen, 2023. "A modified recompression S–CO2 Brayton cycle and its thermodynamic optimization," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029012
    DOI: 10.1016/j.energy.2022.126015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222029012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power of irreversible multistage chemical engine with linear mass transfer law using HJB theory," Energy, Elsevier, vol. 261(PB).
    2. Wang, Shun-sen & Wu, Chuang & Li, Jun, 2018. "Exergoeconomic analysis and optimization of single-pressure single-stage and multi-stage CO2 transcritical power cycles for engine waste heat recovery: A comparative study," Energy, Elsevier, vol. 142(C), pages 559-577.
    3. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Pourfayaz, Fathollah & Hosseinzade, Hadi & Acıkkalp, Emin & Tlili, Iskander & Feidt, Michel, 2016. "Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 585-595.
    4. Wu, Chih & Chen, Lingen & Sun, Fengrui, 1996. "Performance of a regenerative Brayton heat engine," Energy, Elsevier, vol. 21(2), pages 71-76.
    5. Wu, Heng & Ge, Yanlin & Chen, Lingen & Feng, Huijun, 2021. "Power, efficiency, ecological function and ecological coefficient of performance optimizations of irreversible Diesel cycle based on finite piston speed," Energy, Elsevier, vol. 216(C).
    6. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas, 2015. "Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1055-1070.
    7. Chen, Lingen & Qi, Congzheng & Ge, Yanlin & Feng, Huijun, 2022. "Thermal Brownian heat engine with external and internal irreversibilities," Energy, Elsevier, vol. 255(C).
    8. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    9. Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power output of endoreversible non-isothermal chemical engine via linear irreversible thermodynamics," Energy, Elsevier, vol. 255(C).
    10. Uusitalo, Antti & Ameli, Alireza & Turunen-Saaresti, Teemu, 2019. "Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery," Energy, Elsevier, vol. 167(C), pages 60-79.
    11. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).
    12. Kim, Young Min & Sohn, Jeong Lak & Yoon, Eui Soo, 2017. "Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine," Energy, Elsevier, vol. 118(C), pages 893-905.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jialuo & Xia, Shaojun & Chen, Lingen, 2024. "Optimal configurations of ammonia decomposition reactor with minimum power consumption and minimum heat transfer rate," Energy, Elsevier, vol. 293(C).
    2. Yang, Wenhao & Feng, Huijun & Chen, Lingen & Ge, Yanlin, 2023. "Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle," Energy, Elsevier, vol. 278(C).
    3. Yu, Mingzhe & Yang, Fubin & Zhang, Hongguang & Yan, Yinlian & Ping, Xu & Pan, Yachao & Xing, Chengda & Yang, Anren, 2024. "Thermoeconomic performance of supercritical carbon dioxide Brayton cycle systems for CNG engine waste heat recovery," Energy, Elsevier, vol. 289(C).
    4. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid," Energy, Elsevier, vol. 282(C).
    5. Cheng, Kunlin & Li, Jiahui & Yu, Jianchi & Fu, Chuanjie & Qin, Jiang & Jing, Wuxing, 2023. "Novel thermoelectric generator enhanced supercritical carbon dioxide closed-Brayton-cycle power generation systems: Performance comparison and configuration optimization," Energy, Elsevier, vol. 284(C).
    6. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    7. Ge, Yanlin & Wu, Heng & Chen, Lingen & Feng, Huijun & Xie, Zhihui, 2023. "Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Performance optimization of diffusive mass transfer law irreversible isothermal chemical pump," Energy, Elsevier, vol. 263(PC).
    2. Ge, Yanlin & Wu, Heng & Chen, Lingen & Feng, Huijun & Xie, Zhihui, 2023. "Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle," Energy, Elsevier, vol. 270(C).
    3. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid," Energy, Elsevier, vol. 282(C).
    4. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    5. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    6. Yang, Wenhao & Feng, Huijun & Chen, Lingen & Ge, Yanlin, 2023. "Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle," Energy, Elsevier, vol. 278(C).
    7. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Ecological function performance analysis and multi-objective optimization for an endoreversible four-reservoir chemical pump," Energy, Elsevier, vol. 282(C).
    8. Huang, Jialuo & Xia, Shaojun & Chen, Lingen, 2024. "Optimal configurations of ammonia decomposition reactor with minimum power consumption and minimum heat transfer rate," Energy, Elsevier, vol. 293(C).
    9. Qi, Congzheng & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2023. "Three-heat-reservoir thermal Brownian heat transformer and its performance limits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    10. Xia, Jiaxi & Wang, Jiangfeng & Lou, Juwei & Hu, Jianjun & Yao, Sen, 2023. "Thermodynamic, economic, environmental analysis and multi-objective optimization of a novel combined cooling and power system for cascade utilization of engine waste heat," Energy, Elsevier, vol. 277(C).
    11. Jeong, Yongju & Son, Seongmin & Cho, Seong Kuk & Baik, Seungjoon & Lee, Jeong Ik, 2020. "Evaluation of supercritical CO2 compressor off-design performance prediction methods," Energy, Elsevier, vol. 213(C).
    12. Giovanni Manente & Mário Costa, 2020. "On the Conceptual Design of Novel Supercritical CO 2 Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 13(2), pages 1-31, January.
    13. Li, Bo & Wang, Shun-sen, 2022. "Thermodynamic analysis and optimization of a hybrid cascade supercritical carbon dioxide cycle for waste heat recovery," Energy, Elsevier, vol. 259(C).
    14. Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power of irreversible multistage chemical engine with linear mass transfer law using HJB theory," Energy, Elsevier, vol. 261(PB).
    15. Muhammad, Hafiz Ali & Cho, Junhyun & Cho, Jongjae & Choi, Bongsu & Roh, Chulwoo & Ishfaq, Hafiz Ahmad & Lee, Gilbong & Shin, Hyungki & Baik, Young-Jin & Lee, Beomjoon, 2022. "Performance improvement of supercritical carbon dioxide power cycle at elevated heat sink temperatures," Energy, Elsevier, vol. 239(PD).
    16. Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power output of endoreversible non-isothermal chemical engine via linear irreversible thermodynamics," Energy, Elsevier, vol. 255(C).
    17. Uusitalo, Antti & Turunen-Saaresti, Teemu & Grönman, Aki, 2021. "Design and loss analysis of radial turbines for supercritical CO2 Brayton cycles," Energy, Elsevier, vol. 230(C).
    18. Chen, Lingen & Xia, Shaojun, 2023. "Maximum work configuration for irreversible finite-heat-capacity source engines by applying averaged-optimal-control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    19. Sun, Lei & Tang, Bo & Xie, Yonghui, 2022. "Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization," Energy, Elsevier, vol. 256(C).
    20. Wu, Haifeng & Liu, Qibin & Xie, Gengxin & Guo, Shaopeng & Zheng, Jie & Su, Bosheng, 2020. "Performance investigation of a novel hybrid combined cooling, heating and power system with solar thermochemistry in different climate zones," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.