IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222021624.html
   My bibliography  Save this article

Maximizing power of irreversible multistage chemical engine with linear mass transfer law using HJB theory

Author

Listed:
  • Chen, Lingen
  • Xia, Shaojun

Abstract

Chemical engine is an abstract model for many devices and processes. Its thermodynamic performance analysis and optimization is meaningful. A model of irreversible multistage isothermal chemical engine (MICE) system with linear mass transfer law [g∝Δμ] and the irreversibilities of internal dissipation effect of working fluid and finite rate mass transfer is built, and its performances is investigated and optimized. For fixed initial key component concentration and fixed initial time, the maximum power output (MPO) of the irreversible MICE is obtained by applying Hamilton-Jacobi-Bellman optimization theory analytically. Numerical examples are provided. The results indicate that difference between chemical potential of key component concentration (KCC) and Carnot chemical potential (See Eq. (12) in this paper for its definition) for MPO is constant, KCC at high-chemical-potential side decreases with increase of time nonlinearly, and irreversibility factor affects MPO of irreversible MICE and the corresponding optimal KCC configuration qualitatively.

Suggested Citation

  • Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power of irreversible multistage chemical engine with linear mass transfer law using HJB theory," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021624
    DOI: 10.1016/j.energy.2022.125277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    2. Lin, Guoxing & Chen, Jincan & Brück, Ekkes, 2004. "Irreversible chemical-engines and their optimal performance analysis," Applied Energy, Elsevier, vol. 78(2), pages 123-136, June.
    3. Wu, Heng & Ge, Yanlin & Chen, Lingen & Feng, Huijun, 2021. "Power, efficiency, ecological function and ecological coefficient of performance optimizations of irreversible Diesel cycle based on finite piston speed," Energy, Elsevier, vol. 216(C).
    4. Sieniutycz, Stanislaw, 2009. "Dynamic bounds for power and efficiency of non-ideal energy converters under nonlinear transfer laws," Energy, Elsevier, vol. 34(3), pages 334-340.
    5. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Ecological function performance analysis and multi-objective optimization for an endoreversible four-reservoir chemical pump," Energy, Elsevier, vol. 282(C).
    2. Shi, Shuangshuang & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2024. "Performance optimization of non-isothermal endoreversible chemical pump via Lewis analogy," Energy, Elsevier, vol. 300(C).
    3. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Performance optimization of diffusive mass transfer law irreversible isothermal chemical pump," Energy, Elsevier, vol. 263(PC).
    4. Jin, Qinglong & Xia, Shaojun & Chen, Lingen, 2023. "A modified recompression S–CO2 Brayton cycle and its thermodynamic optimization," Energy, Elsevier, vol. 263(PE).
    5. Huang, Jialuo & Xia, Shaojun & Chen, Lingen, 2024. "Optimal configurations of ammonia decomposition reactor with minimum power consumption and minimum heat transfer rate," Energy, Elsevier, vol. 293(C).
    6. Yang, Wenhao & Feng, Huijun & Chen, Lingen & Ge, Yanlin, 2023. "Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle," Energy, Elsevier, vol. 278(C).
    7. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid," Energy, Elsevier, vol. 282(C).
    8. Qi, Congzheng & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2023. "Three-heat-reservoir thermal Brownian heat transformer and its performance limits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    9. Chen, Lingen & Xia, Shaojun, 2023. "Maximum work configuration for irreversible finite-heat-capacity source engines by applying averaged-optimal-control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    10. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    11. Ge, Yanlin & Wu, Heng & Chen, Lingen & Feng, Huijun & Xie, Zhihui, 2023. "Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power output of endoreversible non-isothermal chemical engine via linear irreversible thermodynamics," Energy, Elsevier, vol. 255(C).
    2. Jin, Qinglong & Xia, Shaojun & Chen, Lingen, 2023. "A modified recompression S–CO2 Brayton cycle and its thermodynamic optimization," Energy, Elsevier, vol. 263(PE).
    3. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Performance optimization of diffusive mass transfer law irreversible isothermal chemical pump," Energy, Elsevier, vol. 263(PC).
    4. Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2011. "Model of a total momentum filtered energy selective electron heat pump affected by heat leakage and its performance characteristics," Energy, Elsevier, vol. 36(7), pages 4011-4018.
    5. Huang, Jialuo & Xia, Shaojun & Chen, Lingen, 2024. "Optimal configurations of ammonia decomposition reactor with minimum power consumption and minimum heat transfer rate," Energy, Elsevier, vol. 293(C).
    6. Shuangshuang Shi & Yanlin Ge & Lingen Chen & Huijun Feng, 2021. "Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Atkinson Cycle with Nonlinear Variation of Working Fluid’s Specific Heat," Energies, MDPI, vol. 14(14), pages 1-23, July.
    7. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    8. Meng, Fankai & Chen, Lingen & Sun, Fengrui, 2011. "A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities," Energy, Elsevier, vol. 36(5), pages 3513-3522.
    9. Sieniutycz, Stanisław & Poświata, Artur, 2012. "Thermodynamic aspects of power production in thermal, chemical and electrochemical systems," Energy, Elsevier, vol. 45(1), pages 62-70.
    10. Lingen Chen & Kang Ma & Huijun Feng & Yanlin Ge, 2020. "Optimal Configuration of a Gas Expansion Process in a Piston-Type Cylinder with Generalized Convective Heat Transfer Law," Energies, MDPI, vol. 13(12), pages 1-20, June.
    11. Sai, Wei & Pan, Zehua & Liu, Siyu & Jiao, Zhenjun & Zhong, Zheng & Miao, Bin & Chan, Siew Hwa, 2023. "Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms," Applied Energy, Elsevier, vol. 352(C).
    12. Szega, Marcin & Żymełka, Piotr & Janda, Tomasz, 2022. "Improving the accuracy of electricity and heat production forecasting in a supervision computer system of a selected gas-fired CHP plant operation," Energy, Elsevier, vol. 239(PE).
    13. Ge, Yanlin & Wu, Heng & Chen, Lingen & Feng, Huijun & Xie, Zhihui, 2023. "Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle," Energy, Elsevier, vol. 270(C).
    14. Zhang, Yuanzhe & Liu, Pei & Li, Zheng, 2023. "Gas turbine off-design behavior modelling and operation windows analysis under different ambient conditions," Energy, Elsevier, vol. 262(PA).
    15. Açıkkalp, Emin, 2015. "Exergetic sustainability evaluation of irreversible Carnot refrigerator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 311-320.
    16. Shi, Shuangshuang & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2024. "Performance optimization of non-isothermal endoreversible chemical pump via Lewis analogy," Energy, Elsevier, vol. 300(C).
    17. Xia, Dan & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2007. "Endoreversible four-reservoir chemical pump," Applied Energy, Elsevier, vol. 84(1), pages 56-65, January.
    18. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas, 2015. "Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1055-1070.
    19. Han, Zhiyue & Wang, Wenjie & Du, Zhiming & Zhang, Yupeng & Yu, Yue, 2021. "Self-heating inflatable lifejacket using gas generating agent as energy source," Energy, Elsevier, vol. 224(C).
    20. Fershalov, A. Yu & Fershalov, Yu. Ya & Fershalov, M. Yu, 2021. "Principles of designing gas microturbine stages," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.