IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3228-d804626.html
   My bibliography  Save this article

An Efficient Method for Computing the Power Potential of Bypass Hydropower Installations

Author

Listed:
  • Olivier Cleynen

    (Laboratory of Fluid Dynamics and Technical Flows, Institute of Fluid Dynamics and Thermodynamics, University Otto von Guericke of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

  • Dennis Powalla

    (Laboratory of Fluid Dynamics and Technical Flows, Institute of Fluid Dynamics and Thermodynamics, University Otto von Guericke of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

  • Stefan Hoerner

    (Laboratory of Fluid Dynamics and Technical Flows, Institute of Fluid Dynamics and Thermodynamics, University Otto von Guericke of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

  • Dominique Thévenin

    (Laboratory of Fluid Dynamics and Technical Flows, Institute of Fluid Dynamics and Thermodynamics, University Otto von Guericke of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

Abstract

Small-scale hydropower installations make possible a transition towards decentralized electrical power production with very low ecological footprint. However, the prediction of their power potential is difficult, because the incoming flow velocity and the inlet and outlet water heights are often outside of the control of the operator. This leads to a need for a method capable of calculating an installation’s power potential and efficiency rapidly, in order to cover for many possible load cases. In this article, the use of a previously-published theoretical framework is demonstrated with the case of a mid-scale hydropower device, a 26 m long water vortex power plant. It is shown that a simplified CFD simulation with a single output (the mass flow rate) is sufficient to obtain values for the two coefficients in the model. Once this is done, it becomes possible to evaluate the device’s real-life performance, benchmarking it against reference values anchored in physical principles. The method can be used to provide design guidance and rapidly compare different load cases, providing answers that are not easily obtained using intuition or even experiments. These results are obtained for a computing cost several orders of magnitude smaller than those associated with a full description of the flow using CFD methods.

Suggested Citation

  • Olivier Cleynen & Dennis Powalla & Stefan Hoerner & Dominique Thévenin, 2022. "An Efficient Method for Computing the Power Potential of Bypass Hydropower Installations," Energies, MDPI, vol. 15(9), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3228-:d:804626
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhamad Alhaqurahman Isa & Priana Sudjono & Tatsuro Sato & Nariaki Onda & Izuki Endo & Asari Takada & Barti Setiani Muntalif & Jun’ichiro Ide, 2021. "Assessing the Sustainable Development of Micro-Hydro Power Plants in an Isolated Traditional Village West Java, Indonesia," Energies, MDPI, vol. 14(20), pages 1-13, October.
    2. Jaewon Jung & Heechan Han & Kyunghun Kim & Hung Soo Kim, 2021. "Machine Learning-Based Small Hydropower Potential Prediction under Climate Change," Energies, MDPI, vol. 14(12), pages 1-10, June.
    3. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    4. Yingzi Jiang & Arul Prakash Raji & Vijayanandh Raja & Fuzhang Wang & Hussein A. Z. AL-bonsrulah & Ramesh Murugesan & Sudhakaran Ranganathan, 2022. "Multi–Disciplinary Optimizations of Small-Scale Gravitational Vortex Hydropower (SGVHP) System through Computational Hydrodynamic and Hydro–Structural Analyses," Sustainability, MDPI, vol. 14(2), pages 1-35, January.
    5. Rovick Tarife & Yosuke Nakanishi & Yining Chen & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2022. "Optimization of Hybrid Renewable Energy Microgrid for Rural Agricultural Area in Southern Philippines," Energies, MDPI, vol. 15(6), pages 1-29, March.
    6. Dennis Powalla & Stefan Hoerner & Olivier Cleynen & Nadine Müller & Jürgen Stamm & Dominique Thévenin, 2021. "A Computational Fluid Dynamics Model for a Water Vortex Power Plant as Platform for Etho- and Ecohydraulic Research," Energies, MDPI, vol. 14(3), pages 1-14, January.
    7. Zangiabadi, E. & Masters, I. & Williams, Alison J. & Croft, T.N. & Malki, R. & Edmunds, M. & Mason-Jones, A. & Horsfall, I., 2017. "Computational prediction of pressure change in the vicinity of tidal stream turbines and the consequences for fish survival rate," Renewable Energy, Elsevier, vol. 101(C), pages 1141-1156.
    8. Dariusz Borkowski & Marek Majdak, 2020. "Small Hydropower Plants with Variable Speed Operation—An Optimal Operation Curve Determination," Energies, MDPI, vol. 13(23), pages 1-20, November.
    9. Powalla, Dennis & Hoerner, Stefan & Cleynen, Olivier & Thévenin, Dominique, 2022. "A numerical approach for active fish behaviour modelling with a view toward hydropower plant assessment," Renewable Energy, Elsevier, vol. 188(C), pages 957-966.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Powalla, Dennis & Hoerner, Stefan & Cleynen, Olivier & Thévenin, Dominique, 2022. "A numerical approach for active fish behaviour modelling with a view toward hydropower plant assessment," Renewable Energy, Elsevier, vol. 188(C), pages 957-966.
    2. Hendra Hendra & Dhimas Satria & Hernadewita Hernadewita & Yozerizal Yozerizal & Frengki Hardian & Ahmed M. Galal, 2023. "Performance of Generator Translation and Rotation on Stroke Length Drive of the Two-Rod Mechanism in Renewable Energy Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    3. Vijayaraja Loganathan & Dhanasekar Ravikumar & Rupa Kesavan & Kanakasri Venkatesan & Raadha Saminathan & Raju Kannadasan & Mahalingam Sudhakaran & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2022. "A Case Study on Renewable Energy Sources, Power Demand, and Policies in the States of South India—Development of a Thermoelectric Model," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    4. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    5. Eva Bílková & Jiří Souček & Martin Kantor & Roman Kubíček & Petr Nowak, 2023. "Variable-Speed Propeller Turbine for Small Hydropower Applications," Energies, MDPI, vol. 16(9), pages 1-14, April.
    6. Diego Mendoza Osorio & Javier Rosero Garcia, 2023. "Convex Stochastic Approaches for the Optimal Allocation of Distributed Energy Resources in AC Distribution Networks with Measurements Fitted to a Continuous Probability Distribution Function," Energies, MDPI, vol. 16(14), pages 1-27, July.
    7. Singh, Rajesh K. & Romero-Gomez, Pedro & Colotelo, Alison H. & Perkins, William A. & Richmond, Marshall C., 2022. "Computational studies of hydraulic stressors for biological performance assessment in a hydropower plant with Kaplan turbine," Renewable Energy, Elsevier, vol. 199(C), pages 768-781.
    8. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    9. Peter Tauš & Martin Beer, 2022. "Evaluation of the Hydropower Potential of the Torysa River and Its Energy Use in the Process of Reducing Energy Poverty of Local Communities," Energies, MDPI, vol. 15(10), pages 1-15, May.
    10. Efstathios E. Michaelides, 2022. "Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation," Energies, MDPI, vol. 15(16), pages 1-11, August.
    11. Klopries, Elena-Maria & Schüttrumpf, Holger, 2020. "Mortality assessment for adult European eels (Anguilla Anguilla) during turbine passage using CFD modelling," Renewable Energy, Elsevier, vol. 147(P1), pages 1481-1490.
    12. Paweł Dworak & Andrzej Mrozik & Agata Korzelecka-Orkisz & Adam Tański & Krzysztof Formicki, 2023. "Energy Self-Sufficiency of a Salmonids Breeding Facility in the Recirculating Aquaculture System," Energies, MDPI, vol. 16(6), pages 1-22, March.
    13. Edirisinghe, Dylan S. & Yang, Ho-Seong & Gunawardane, S.D.G.S.P. & Alkhabbaz, Ali & Tongphong, Watchara & Yoon, Min & Lee, Young-Ho, 2023. "Numerical and experimental investigation on water vortex power plant to recover the energy from industrial wastewater," Renewable Energy, Elsevier, vol. 204(C), pages 617-634.
    14. Geoffrey Gasore & Arthur Santos & Etienne Ntagwirumugara & Daniel Zimmerle, 2023. "Sizing of Small Hydropower Plants for Highly Variable Flows in Tropical Run-of-River Installations: A Case Study of the Sebeya River," Energies, MDPI, vol. 16(3), pages 1-14, January.
    15. Daniel Kitamura & Leonardo Willer & Bruno Dias & Tiago Soares, 2023. "Risk-Averse Stochastic Programming for Planning Hybrid Electrical Energy Systems: A Brazilian Case," Energies, MDPI, vol. 16(3), pages 1-16, February.
    16. Linus Feigenwinter & David F. Vetsch & Stephan Kammerer & Carl Robert Kriewitz & Robert M. Boes, 2019. "Conceptual Approach for Positioning of Fish Guidance Structures Using CFD and Expert Knowledge," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    17. Yang, Chunxia & Li, Qian & Hu, Xueyuan & Zheng, Yuan & Wu, Jiawei & Su, Shengzhi & Yu, An, 2023. "Fish injury analysis and flip-blade type optimization design of an undershot waterwheel," Renewable Energy, Elsevier, vol. 219(P1).
    18. Brown, Erik & Sulaeman, Samer & Quispe-Abad, Raul & Müller, Norbert & Moran, Emilio, 2023. "Safe passage for fish: The case for in-stream turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Upasana Lakhina & Irraivan Elamvazuthi & Nasreen Badruddin & Ajay Jangra & Bao-Huy Truong & Joseph M. Guerrero, 2023. "A Cost-Effective Multi-Verse Optimization Algorithm for Efficient Power Generation in a Microgrid," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    20. Kuo-Chen Wu & Jui-Chu Lin & Wen-Te Chang & Chia-Szu Yen & Huang-Jie Fu, 2023. "Research and Analysis of Promotional Policies for Small Hydropower Generation in Taiwan," Energies, MDPI, vol. 16(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3228-:d:804626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.