IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3514-d574263.html
   My bibliography  Save this article

A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming

Author

Listed:
  • Oleg Bazaluk

    (Belt and Road Initiative Institute for Chinese-European Studies (BRIICES), Guangdong University of Petrochemical Technology, Maoming 525000, China)

  • Orest Slabyi

    (Department of Technical Mechanics, Ivano-Frankivsk National Technical University of Oil and Gas, 076019 Ivano-Frankivsk, Ukraine)

  • Vasyl Vekeryk

    (Department of Technical Mechanics, Ivano-Frankivsk National Technical University of Oil and Gas, 076019 Ivano-Frankivsk, Ukraine)

  • Andrii Velychkovych

    (Department of Construction and Civil Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, 076019 Ivano-Frankivsk, Ukraine)

  • Liubomyr Ropyak

    (Department of Computerized Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, 076019 Ivano-Frankivsk, Ukraine)

  • Vasyl Lozynskyi

    (Department of Mining Engineering and Education, Dnipro University of Technology, 49005 Dnipro, Ukraine)

Abstract

The paper proposes a new technology for fluid production intensification, in particular hydrocarbons, which is implemented via significant increasing of the local wellbore diameter in the interval, where the productive stratum is present. The proposed technology improves the well productivity by increasing the filtration surface area and opening new channels for filtering fluids into the well. The innovative, technical idea is to drill large diameter circular recesses in planes perpendicular to the well axis. After that, the rock mass located between the circular recesses are destroyed by applying static or dynamic axial loads. The required value of the axial force is provided by the weight of the standard drilling tool. As a result of the study, the analytical relations to specify the admissible radius of circular recesses and admissible thickness of rock mass between two adjacent circular recesses from the condition of safe operation are obtained. The numerical analysis carried out for typical reservoir rocks substantiated the possibility of well diameter local reaming twenty times. A special tool for circular recess drilling is developed and the principle of its operation is described. The advantage of the proposed approaches is the low energy consumption for well diameter reaming. Our technology will have special economic expediency for the intensification of production from hydrodynamically imperfect wells and under the condition of fluid filtration according to the expressed nonlinear law.

Suggested Citation

  • Oleg Bazaluk & Orest Slabyi & Vasyl Vekeryk & Andrii Velychkovych & Liubomyr Ropyak & Vasyl Lozynskyi, 2021. "A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming," Energies, MDPI, vol. 14(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3514-:d:574263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. S. Liew & Kamaluddeen Usman Danyaro & Noor Amila Wan Abdullah Zawawi, 2020. "A Comprehensive Guide to Different Fracturing Technologies: A Review," Energies, MDPI, vol. 13(13), pages 1-20, June.
    2. Oleg Bazaluk & Kateryna Sai & Vasyl Lozynskyi & Mykhailo Petlovanyi & Pavlo Saik, 2021. "Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea," Energies, MDPI, vol. 14(5), pages 1-24, March.
    3. Magdalena Tutak & Jarosław Brodny & Dawid Szurgacz & Leszek Sobik & Sergey Zhironkin, 2020. "The Impact of the Ventilation System on the Methane Release Hazard and Spontaneous Combustion of Coal in the Area of Exploitation—A Case Study," Energies, MDPI, vol. 13(18), pages 1-31, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg Bazaluk & Vasyl Lozynskyi & Volodymyr Falshtynskyi & Pavlo Saik & Roman Dychkovskyi & Edgar Cabana, 2021. "Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process," Energies, MDPI, vol. 14(14), pages 1-18, July.
    2. Dawid Szurgacz & Sergey Zhironkin & Jiří Pokorný & A. J. S. (Sam) Spearing & Stefan Vöth & Michal Cehlár & Izabela Kowalewska, 2021. "Development of an Active Training Method for Belt Conveyor," IJERPH, MDPI, vol. 19(1), pages 1-12, December.
    3. Michał Bembenek & Volodymyr Kotsyubynsky & Volodymyra Boychuk & Bogdan Rachiy & Ivan Budzulyak & Łukasz Kowalski & Liubomyr Ropyak, 2022. "Effect of Synthesis Conditions on Capacitive Properties of Porous Carbon Derived from Hemp Bast Fiber," Energies, MDPI, vol. 15(22), pages 1-15, November.
    4. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.
    5. Maciej Dutkiewicz & Ivan Shatskyi & Oleh Martsynkiv & Eduard Kuzmenko, 2022. "Mechanism of Casing String Curvature Due to Displacement of Surface Strata," Energies, MDPI, vol. 15(14), pages 1-12, July.
    6. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    7. Oleg Bazaluk & Andrii Velychkovych & Liubomyr Ropyak & Mykhailo Pashechko & Tetiana Pryhorovska & Vasyl Lozynskyi, 2021. "Influence of Heavy Weight Drill Pipe Material and Drill Bit Manufacturing Errors on Stress State of Steel Blades," Energies, MDPI, vol. 14(14), pages 1-15, July.
    8. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Szelka & Mariusz Woszczyński & Jerzy Jagoda & Paweł Kamiński, 2021. "Wireless Leak Detection System as a Way to Reduce Electricity Consumption in Ventilation Ducts," Energies, MDPI, vol. 14(13), pages 1-17, June.
    2. Zhang, Yiqun & Zhang, Panpan & Hui, Chengyu & Tian, Shouceng & Zhang, Bo, 2023. "Numerical analysis of the geomechanical responses during natural gas hydrate production by multilateral wells," Energy, Elsevier, vol. 269(C).
    3. Shuzhan Li & Jin Yang & Guojing Zhu & Jiakang Wang & Yi Huang & Kun Jiang, 2024. "Research on Lateral Load Bearing Characteristics of Deepwater Drilling Conductor Suction Pile," Energies, MDPI, vol. 17(5), pages 1-20, February.
    4. Marek Jendryś & Andrzej Hadam & Mateusz Ćwiękała, 2021. "Directional Hydraulic Fracturing (DHF) of the Roof, as an Element of Rock Burst Prevention in the Light of Underground Observations and Numerical Modelling," Energies, MDPI, vol. 14(3), pages 1-18, January.
    5. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    6. Xuefeng Li & Baojiang Sun & Baojin Ma & Hao Li & Huaqing Liu & Dejun Cai & Xiansi Wang & Xiangpeng Li, 2023. "Study on the Evolution Law of Wellbore Stability Interface during Drilling of Offshore Gas Hydrate Reservoirs," Energies, MDPI, vol. 16(22), pages 1-17, November.
    7. Zhenhua Han & Luqing Zhang & Jian Zhou & Zhejun Pan & Song Wang & Ruirui Li, 2023. "Effect of Mineral Grain and Hydrate Layered Distribution Characteristics on the Mechanical Properties of Hydrate-Bearing Sediments," Energies, MDPI, vol. 16(21), pages 1-19, October.
    8. Ruslan Gizatullin & Mikhail Dvoynikov & Natalya Romanova & Victor Nikitin, 2023. "Drilling in Gas Hydrates: Managing Gas Appearance Risks," Energies, MDPI, vol. 16(5), pages 1-13, March.
    9. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    10. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    11. Oleg Bazaluk & Andrii Velychkovych & Liubomyr Ropyak & Mykhailo Pashechko & Tetiana Pryhorovska & Vasyl Lozynskyi, 2021. "Influence of Heavy Weight Drill Pipe Material and Drill Bit Manufacturing Errors on Stress State of Steel Blades," Energies, MDPI, vol. 14(14), pages 1-15, July.
    12. Oleg Bazaluk & Vasyl Lozynskyi & Volodymyr Falshtynskyi & Pavlo Saik & Roman Dychkovskyi & Edgar Cabana, 2021. "Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process," Energies, MDPI, vol. 14(14), pages 1-18, July.
    13. Shang, Yuting & Li, Zongcheng & Zhu, Qi & Guo, Weiluo & Liu, Zhiyi & Zheng, Zhuo & Feng, Yujun & Yin, Hongyao, 2024. "A salt-induced smart and tough clean hydrofracturing fluid with superior high-temperature and high-salinity resistance," Energy, Elsevier, vol. 286(C).
    14. Adiqa Kausar Kiani & Wasim Ullah Khan & Muhammad Asif Zahoor Raja & Yigang He & Zulqurnain Sabir & Muhammad Shoaib, 2021. "Intelligent Backpropagation Networks with Bayesian Regularization for Mathematical Models of Environmental Economic Systems," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    15. Sotirios Nik. Longinos & Lei Wang & Randy Hazlett, 2022. "Advances in Cryogenic Fracturing of Coalbed Methane Reservoirs with LN 2," Energies, MDPI, vol. 15(24), pages 1-21, December.
    16. Zhao, Qi & Li, Yi & Chen, Xianfeng, 2022. "Fire extinguishing and explosion suppression characteristics of explosion suppression system with N2/APP after methane/coal dust explosion," Energy, Elsevier, vol. 257(C).
    17. Paweł Zimroz & Paweł Trybała & Adam Wróblewski & Mateusz Góralczyk & Jarosław Szrek & Agnieszka Wójcik & Radosław Zimroz, 2021. "Application of UAV in Search and Rescue Actions in Underground Mine—A Specific Sound Detection in Noisy Acoustic Signal," Energies, MDPI, vol. 14(13), pages 1-21, June.
    18. Faisal Mehmood & Michael Z. Hou & Jianxing Liao & Muhammad Haris & Cheng Cao & Jiashun Luo, 2021. "Multiphase Multicomponent Numerical Modeling for Hydraulic Fracturing with N-Heptane for Efficient Stimulation in a Tight Gas Reservoir of Germany," Energies, MDPI, vol. 14(11), pages 1-26, May.
    19. Qingtao Bu & Qingguo Meng & Jie Dong & Chengfeng Li & Changling Liu & Jinhuan Zhao & Zihao Wang & Wengao Zhao & Jiale Kang & Gaowei Hu, 2022. "Integration of Pore-Scale Visualization and an Ultrasonic Test System of Methane Hydrate-Bearing Sediments," Energies, MDPI, vol. 15(14), pages 1-14, July.
    20. Xinyue Duan & Jiaqiang Zuo & Jiadong Li & Yu Tian & Chuanyong Zhu & Liang Gong, 2023. "Prediction of Gas Hydrate Formation in the Wellbore," Energies, MDPI, vol. 16(14), pages 1-10, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3514-:d:574263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.