IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223030797.html
   My bibliography  Save this article

A salt-induced smart and tough clean hydrofracturing fluid with superior high-temperature and high-salinity resistance

Author

Listed:
  • Shang, Yuting
  • Li, Zongcheng
  • Zhu, Qi
  • Guo, Weiluo
  • Liu, Zhiyi
  • Zheng, Zhuo
  • Feng, Yujun
  • Yin, Hongyao

Abstract

Hydraulic fracturing is an important technology to improve oil and gas productivity for reservoirs of both conventional and unconventional. To minimize reservoir damage during hydraulic fracturing, researchers have aimed to develop clean fracturing fluids based on viscoelastic surfactants (VESs); however, reduced efficiency at high temperature and high salinity limits their wider applications. Here, an ultra-long-chain cationic surfactant docosyl(trimethyl)azanium chloride (DCTAC) was proposed to prepare fracturing fluid in the presence of high content of various inorganic salts to address this problem. DCTAC shows excellent salt tolerance, forming a homogeneous solution in 22 % NaCl or 55 % CaCl2 at 60 °C, which is several times higher than that for previously reported VESs. Salt can induce DCTAC to form an entangled three-dimensional wormlike micelles network, imparting the bulk fluid excellent rheological properties. DCTAC-thickened fluids show good sand-carrying and gel-breaking performance, and they can resist a temperature of up to 140 °C and a salinity level of at least 16 × 104 mg‧L−1. Compared with previously reported clean fracturing fluids, DCTAC-thickened fluid shows superior high-temperature and high-salinity resistance. The mechanism is elaborated and discussed. The findings in this study are helpful to understand surfactant aggregates stability and assist the development of novel stable supramolecular nanostructures.

Suggested Citation

  • Shang, Yuting & Li, Zongcheng & Zhu, Qi & Guo, Weiluo & Liu, Zhiyi & Zheng, Zhuo & Feng, Yujun & Yin, Hongyao, 2024. "A salt-induced smart and tough clean hydrofracturing fluid with superior high-temperature and high-salinity resistance," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030797
    DOI: 10.1016/j.energy.2023.129685
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129685?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jianchun & Qin, Huating & Li, Hangyu & Lu, Cheng & Li, Shuxia & Wu, Didi, 2023. "Enhanced gas production efficiency of class 1,2,3 hydrate reservoirs using hydraulic fracturing technique," Energy, Elsevier, vol. 263(PE).
    2. M. S. Liew & Kamaluddeen Usman Danyaro & Noor Amila Wan Abdullah Zawawi, 2020. "A Comprehensive Guide to Different Fracturing Technologies: A Review," Energies, MDPI, vol. 13(13), pages 1-20, June.
    3. Zheng, Yangfeng & Zhai, Cheng & Chen, Aikun & Yu, Xu & Xu, Jizhao & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zhu, Xinyu & Li, Yujie, 2023. "Microstructure evolution of bituminite and anthracite modified by different fracturing fluids," Energy, Elsevier, vol. 263(PB).
    4. Silin Mihail & Magadova Lyubov & Malkin Denis & Krisanova Polina & Borodin Sergei & Filatov Andrey, 2022. "Applicability Assessment of Viscoelastic Surfactants and Synthetic Polymers as a Base of Hydraulic Fracturing Fluids," Energies, MDPI, vol. 15(8), pages 1-19, April.
    5. Huang, Feifei & Pu, Chunsheng & Gu, Xiaoyu & Ye, Zhengqin & Khan, Nasir & An, Jie & Wu, Feipeng & Liu, Jing, 2021. "Study of a low-damage efficient-imbibition fracturing fluid without flowback used for low-pressure tight reservoirs," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Marek Jendryś & Andrzej Hadam & Mateusz Ćwiękała, 2021. "Directional Hydraulic Fracturing (DHF) of the Roof, as an Element of Rock Burst Prevention in the Light of Underground Observations and Numerical Modelling," Energies, MDPI, vol. 14(3), pages 1-18, January.
    3. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    4. Wang, Anlun & Chen, Yinghe & Wei, Jianguang & Li, Jiangtao & Zhou, Xiaofeng, 2023. "Experimental study on the mechanism of five point pattern refracturing for vertical & horizontal wells in low permeability and tight oil reservoirs," Energy, Elsevier, vol. 272(C).
    5. Lv, Mingkun & Guo, Tiankui & Jia, Xuliang & Wen, Duwu & Chen, Ming & Wang, Yunpeng & Qu, Zhanqing & Ma, Daibing, 2024. "Study on the pump schedule impact in hydraulic fracturing of unconventional reservoirs on proppant transport law," Energy, Elsevier, vol. 286(C).
    6. Pang, Mingkun & Pan, Hongyu & Ji, Bingnan & Zhang, Hang & Zhang, Tianjun, 2023. "Experimental investigation of flow regime transition characteristics of fractured coal bodies around gas extraction boreholes," Energy, Elsevier, vol. 270(C).
    7. Wu, Yining & Yan, Xiang & Huang, Yongping & Zhao, Mingwei & Zhang, Liyuan & Dai, Caili, 2024. "Ultra-deep reservoirs gel fracturing fluid with stepwise reinforcement network from supramolecular force to chemical crosslinking," Energy, Elsevier, vol. 293(C).
    8. Wei, Jianguang & Zhou, Xiaofeng & Shamil, Sultanov & Yuriy, Kotenev & Yang, Erlong & Yang, Ying & Wang, Anlun, 2023. "Lithofacies influence characteristics on typical shale pore structure," Energy, Elsevier, vol. 282(C).
    9. Bai, Yajie & Clarke, Matthew A. & Hou, Jian & Liu, Yongge & Lu, Nu & Zhao, Ermeng & Xu, Hongzhi & Chen, Litao & Guo, Tiankui, 2023. "Study on improved efficiency of induced fracture in gas hydrate reservoir depressurization development," Energy, Elsevier, vol. 278(C).
    10. Zhang, He, 2024. "Study on microscale stress sensitivity of CO2 foam fracturing in tight reservoirs," Energy, Elsevier, vol. 294(C).
    11. Zhang, Yiqun & Zhang, Panpan & Hui, Chengyu & Tian, Shouceng & Zhang, Bo, 2023. "Numerical analysis of the geomechanical responses during natural gas hydrate production by multilateral wells," Energy, Elsevier, vol. 269(C).
    12. Zhou, Xiaofeng & Wei, Jianguang & Zhao, Junfeng & Zhang, Xiangyu & Fu, Xiaofei & Shamil, Sultanov & Abdumalik, Gayubov & Chen, Yinghe & Wang, Jian, 2024. "Study on pore structure and permeability sensitivity of tight oil reservoirs," Energy, Elsevier, vol. 288(C).
    13. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).
    14. Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
    15. Li, Jiangtao & Zhou, Xiaofeng & Liu, Xibao & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Cross-scale diffusion characteristics in microscale fractures of tight and shale gas reservoirs considering real gas – mixture – body diffusion – water film coupling," Energy, Elsevier, vol. 283(C).
    16. Tian, Weibing & Wu, Keliu & Feng, Dong & Gao, Yanling & Li, Jing & Chen, Zhangxin, 2023. "Dynamic contact angle effect on water-oil imbibition in tight oil reservoirs," Energy, Elsevier, vol. 284(C).
    17. Oleg Bazaluk & Orest Slabyi & Vasyl Vekeryk & Andrii Velychkovych & Liubomyr Ropyak & Vasyl Lozynskyi, 2021. "A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming," Energies, MDPI, vol. 14(12), pages 1-15, June.
    18. Zhang, Jun, 2023. "Performance of high temperature steam injection in horizontal wells of heavy oil reservoirs," Energy, Elsevier, vol. 282(C).
    19. Sotirios Nik. Longinos & Lei Wang & Randy Hazlett, 2022. "Advances in Cryogenic Fracturing of Coalbed Methane Reservoirs with LN 2," Energies, MDPI, vol. 15(24), pages 1-21, December.
    20. Li, Xiao-Yan & Wang, Yi & Li, Xiao-Sen & Zhou, Shi-Dong & Liu, Yang & Lv, Xiao-Fang, 2024. "Study on the production of gas hydrates and underlying free gas by horizontal well under different directions of hydraulic fracturing," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.