IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5172-d1500816.html
   My bibliography  Save this article

Investigation into the Effect of Permeable Boundary Sealing on the Behavior of Hydrate Exploitation via Depressurization Combined with Heat Injection

Author

Listed:
  • Yihan Wang

    (Ganzhou Water Limited Company, Ganzhou 341000, China)

  • Yunshuang Zeng

    (Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Xiuping Zhong

    (Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, College of Construction Engineering, Jilin University, Changchun 130026, China)

  • Dongbin Pan

    (Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China
    Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, College of Construction Engineering, Jilin University, Changchun 130026, China)

  • Chen Chen

    (Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, College of Construction Engineering, Jilin University, Changchun 130026, China)

Abstract

Depressurization combined with heat (mainly hot water) injection is an important technique for exploiting natural gas hydrate (NGH). To overcome the problems of pore water intrusion and hot water energy loss in the technique, this paper employs a method of setting sealing boundaries in permeable overburden and underburden to exploit NGH. The influence of the presence of sealing boundaries on NGH exploitation performances was numerically investigated. The results indicate that the sealing boundaries in permeable overburden and underburden can inhibit water intrusion and reduce heat loss, significantly improving the efficiency of hydrate dissociation and gas production. Specifically, the hydrate dissociation and gas production efficiency increased by 22.0–30.1% and 63.9–85.1%, respectively. Moreover, there is an optimal sealing vertical distance within the range of 0–15 m, maximizing the mining efficiency of NGH at the end of production. On the other hand, the presence of sealing boundaries effectively limits the escape range of CH 4 in the permeable overburden and underburden, resulting in an increasing gas-to-water ratio and an increasing energy efficiency. These findings provide theoretical and technical support for the mining of NGH by depressurization combined with heat injection.

Suggested Citation

  • Yihan Wang & Yunshuang Zeng & Xiuping Zhong & Dongbin Pan & Chen Chen, 2024. "Investigation into the Effect of Permeable Boundary Sealing on the Behavior of Hydrate Exploitation via Depressurization Combined with Heat Injection," Energies, MDPI, vol. 17(20), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5172-:d:1500816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qin, Xuwen & Liang, Qianyong & Ye, Jianliang & Yang, Lin & Qiu, Haijun & Xie, Wenwei & Liang, Jinqiang & Lu, Jin'an & Lu, Cheng & Lu, Hailong & Ma, Baojin & Kuang, Zenggui & Wei, Jiangong & Lu, Hongfe, 2020. "The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea," Applied Energy, Elsevier, vol. 278(C).
    2. Oleg Bazaluk & Kateryna Sai & Vasyl Lozynskyi & Mykhailo Petlovanyi & Pavlo Saik, 2021. "Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea," Energies, MDPI, vol. 14(5), pages 1-24, March.
    3. Yin, Zhenyuan & Moridis, George & Chong, Zheng Rong & Tan, Hoon Kiang & Linga, Praveen, 2018. "Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium," Applied Energy, Elsevier, vol. 230(C), pages 444-459.
    4. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Faling & Gao, Yonghai & Zhang, Heen & Sun, Baojiang & Chen, Ye & Gao, Dongzhi & Zhao, Xinxin, 2022. "Comprehensive evaluation of gas production efficiency and reservoir stability of horizontal well with different depressurization methods in low permeability hydrate reservoir," Energy, Elsevier, vol. 239(PE).
    2. Guo, Wei & Zhong, Xiuping & Chen, Chen & Zhang, Pengyu & Liu, Zhao & Wang, Yuan & Tu, Guigang, 2024. "Stimulation effect of network fracturing combined with sealing boundaries on the depressurization development of hydrate reservoir in China's offshore test site," Energy, Elsevier, vol. 302(C).
    3. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    4. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    5. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    6. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    7. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Zhai, Lianghao & Li, Xitong & Tu, Guigang & Chen, Chen, 2021. "Fracture network stimulation effect on hydrate development by depressurization combined with thermal stimulation using injection-production well patterns," Energy, Elsevier, vol. 228(C).
    8. Mao, Peixiao & Wu, Nengyou & Wan, Yizhao & Hu, Gaowei & Wang, Xingxing, 2023. "Optimization of a multi-fractured multilateral well network in advantageous structural positions of ultralow-permeability hydrate reservoirs," Energy, Elsevier, vol. 268(C).
    9. Sun, Huiru & Chen, Bingbing & Zhao, Guojun & Zhao, Yuechao & Yang, Mingjun & Song, Yongchen, 2020. "The enhancement effect of water-gas two-phase flow on depressurization process: Important for gas hydrate production," Applied Energy, Elsevier, vol. 276(C).
    10. Xuefeng Li & Baojiang Sun & Baojin Ma & Hao Li & Huaqing Liu & Dejun Cai & Xiansi Wang & Xiangpeng Li, 2023. "Study on the Evolution Law of Wellbore Stability Interface during Drilling of Offshore Gas Hydrate Reservoirs," Energies, MDPI, vol. 16(22), pages 1-17, November.
    11. Yin, Zhenyuan & Zhang, Shuyu & Koh, Shanice & Linga, Praveen, 2020. "Estimation of the thermal conductivity of a heterogeneous CH4-hydrate bearing sample based on particle swarm optimization," Applied Energy, Elsevier, vol. 271(C).
    12. Wang, Feifei & Shen, Kaixiang & Zhang, Zhilei & Zhang, Di & Wang, Zhenqing & Wang, Zizhen, 2023. "Numerical simulation of natural gas hydrate development with radial horizontal wells based on thermo-hydro-chemistry coupling," Energy, Elsevier, vol. 272(C).
    13. Zhang, Zhaobin & Li, Yuxuan & Li, Shouding & He, Jianming & Li, Xiao & Xu, Tao & Lu, Cheng & Qin, Xuwen, 2024. "Optimization of the natural gas hydrate hot water injection production method: Insights from numerical and phase equilibrium analysis," Applied Energy, Elsevier, vol. 361(C).
    14. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    15. Wang, Xiao-Hui & Chen, Yun & Li, Xing-Xun & Xu, Qiang & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "An exergy-based energy efficiency analysis on gas production from gas hydrates reservoir by brine stimulation combined depressurization method," Energy, Elsevier, vol. 231(C).
    16. Dong, Lin & Li, Yanlong & Wu, Nengyou & Wan, Yizhao & Liao, Hualin & Wang, Huajian & Zhang, Yajuan & Ji, Yunkai & Hu, Gaowei & Leonenko, Yuri, 2023. "Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems," Energy, Elsevier, vol. 265(C).
    17. Tan, Lin & Liu, Fang & Dai, Sheng & Yao, Junlan, 2024. "A bibliometric analysis of two-decade research efforts in turning natural gas hydrates into energy," Energy, Elsevier, vol. 299(C).
    18. Yang, Mingjun & Zhao, Jie & Zheng, Jia-nan & Song, Yongchen, 2019. "Hydrate reformation characteristics in natural gas hydrate dissociation process: A review," Applied Energy, Elsevier, vol. 256(C).
    19. Tinghui Wan & Miao Yu & Hongfeng Lu & Zongheng Chen & Zhanzhao Li & Lieyu Tian & Keliang Li & Ning Huang & Jingli Wang, 2024. "Numerical Simulation of Vertical Well Depressurization with Different Deployments of Radial Laterals in Class 1-Type Hydrate Reservoir," Energies, MDPI, vol. 17(5), pages 1-19, February.
    20. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5172-:d:1500816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.