IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3725-d579478.html
   My bibliography  Save this article

Application of UAV in Search and Rescue Actions in Underground Mine—A Specific Sound Detection in Noisy Acoustic Signal

Author

Listed:
  • Paweł Zimroz

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-421 Wroclaw, Poland)

  • Paweł Trybała

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-421 Wroclaw, Poland)

  • Adam Wróblewski

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-421 Wroclaw, Poland)

  • Mateusz Góralczyk

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-421 Wroclaw, Poland)

  • Jarosław Szrek

    (Department of Fundamentals of Machine Design and Mechatronic Systems, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-371 Wroclaw, Poland)

  • Agnieszka Wójcik

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-421 Wroclaw, Poland)

  • Radosław Zimroz

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-421 Wroclaw, Poland)

Abstract

The possibility of the application of an unmanned aerial vehicle (UAV) in search and rescue activities in a deep underground mine has been investigated. In the presented case study, a UAV is searching for a lost or injured human who is able to call for help but is not able to move or use any communication device. A UAV capturing acoustic data while flying through underground corridors is used. The acoustic signal is very noisy since during the flight the UAV contributes high-energetic emission. The main goal of the paper is to present an automatic signal processing procedure for detection of a specific sound (supposed to contain voice activity) in presence of heavy, time-varying noise from UAV. The proposed acoustic signal processing technique is based on time-frequency representation and Euclidean distance measurement between reference spectrum (UAV noise only) and captured data. As both the UAV and “injured” person were equipped with synchronized microphones during the experiment, validation has been performed. Two experiments carried out in lab conditions, as well as one in an underground mine, provided very satisfactory results.

Suggested Citation

  • Paweł Zimroz & Paweł Trybała & Adam Wróblewski & Mateusz Góralczyk & Jarosław Szrek & Agnieszka Wójcik & Radosław Zimroz, 2021. "Application of UAV in Search and Rescue Actions in Underground Mine—A Specific Sound Detection in Noisy Acoustic Signal," Energies, MDPI, vol. 14(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3725-:d:579478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3725/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3725/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartłomiej Ziętek & Aleksandra Banasiewicz & Radosław Zimroz & Jarosław Szrek & Sebastian Gola, 2020. "A Portable Environmental Data-Monitoring System for Air Hazard Evaluation in Deep Underground Mines," Energies, MDPI, vol. 13(23), pages 1-18, November.
    2. Magdalena Tutak & Jarosław Brodny & Dawid Szurgacz & Leszek Sobik & Sergey Zhironkin, 2020. "The Impact of the Ventilation System on the Methane Release Hazard and Spontaneous Combustion of Coal in the Area of Exploitation—A Case Study," Energies, MDPI, vol. 13(18), pages 1-31, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Wróblewski & Jacek Wodecki & Paweł Trybała & Radosław Zimroz, 2022. "A Method for Large Underground Structures Geometry Evaluation Based on Multivariate Parameterization and Multidimensional Analysis of Point Cloud Data," Energies, MDPI, vol. 15(17), pages 1-20, August.
    2. Dawid Szurgacz & Sergey Zhironkin & Jiří Pokorný & A. J. S. (Sam) Spearing & Stefan Vöth & Michal Cehlár & Izabela Kowalewska, 2021. "Development of an Active Training Method for Belt Conveyor," IJERPH, MDPI, vol. 19(1), pages 1-12, December.
    3. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.
    4. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    2. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    3. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.
    4. Shizhe Li & Zhaofeng Wang, 2023. "Study on the Coupling Effect of Stress Field and Gas Field in Surrounding Rock of Stope and Gas Migration Law," Energies, MDPI, vol. 16(18), pages 1-20, September.
    5. Hao Sun & Yachi Yao & Ruixuan Yang & Zhaonan Yan & Chen Cao & Yanwen Deng & Shengjiang Wu & Shuhai Liu & Qi Xu & Yong Qin, 2023. "A ZnO Gas Sensor with an Abnormal Response to Hydrogen," Energies, MDPI, vol. 16(15), pages 1-11, August.
    6. Michał Szelka & Mariusz Woszczyński & Jerzy Jagoda & Paweł Kamiński, 2021. "Wireless Leak Detection System as a Way to Reduce Electricity Consumption in Ventilation Ducts," Energies, MDPI, vol. 14(13), pages 1-17, June.
    7. Oleg Bazaluk & Orest Slabyi & Vasyl Vekeryk & Andrii Velychkovych & Liubomyr Ropyak & Vasyl Lozynskyi, 2021. "A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming," Energies, MDPI, vol. 14(12), pages 1-15, June.
    8. Joana Duarte & Fernanda Rodrigues & Jacqueline Castelo Branco, 2022. "Sensing Technology Applications in the Mining Industry—A Systematic Review," IJERPH, MDPI, vol. 19(4), pages 1-16, February.
    9. Adiqa Kausar Kiani & Wasim Ullah Khan & Muhammad Asif Zahoor Raja & Yigang He & Zulqurnain Sabir & Muhammad Shoaib, 2021. "Intelligent Backpropagation Networks with Bayesian Regularization for Mathematical Models of Environmental Economic Systems," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    10. Zhao, Qi & Li, Yi & Chen, Xianfeng, 2022. "Fire extinguishing and explosion suppression characteristics of explosion suppression system with N2/APP after methane/coal dust explosion," Energy, Elsevier, vol. 257(C).
    11. Adam Wróblewski & Arkadiusz Macek & Aleksandra Banasiewicz & Sebastian Gola & Maciej Zawiślak & Anna Janicka, 2023. "CFD Analysis of the Forced Airflow and Temperature Distribution in the Air-Conditioned Operator’s Cabin of the Stationary Rock Breaker in Underground Mine under Increasing Heat Flux," Energies, MDPI, vol. 16(9), pages 1-18, April.
    12. Shaofeng Wang & Sida Guo & Yalan Yang, 2023. "Complexity Study on Multi-Field Coupling Systems for Underground Coal Fires," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    13. Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3725-:d:579478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.