IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp1431-1444.html
   My bibliography  Save this article

An updated assessment of Ireland’s wave energy resource using satellite data assimilation and a revised wave period ratio

Author

Listed:
  • O’Connell, Ross
  • de Montera, Louis
  • Peters, Jared L.
  • Horion, Stéphanie

Abstract

Although wave energy harnessing is still at the pre-commercial stage, accurate and up-to-date resource assessments are necessary to the development of a wave energy industry. Radar altimeters aboard spaceborne platforms provide extensive spatial coverage of wave height estimations but cannot compensate for the scarcity of in-situ measurements associated with their poor temporal resolution. Ireland’s wave energy resource is assessed here using a numerical model developed by Météo-France assimilating wave height data measured from satellite altimeters. The accuracy of the model is first assessed against in-situ wave buoy measurements and compared with other models that do not assimilate remotely sensed data. The use of satellite data assimilation appears to reduce the significant wave height error by 6 cm on average. A bespoke wave period ratio between the energy period and the up-cross period based on the experimental work of Cahill and Lewis (2014) is then used to compute the wave power around Ireland. The new map is compared with assessments which used other data and methodologies and is found to exhibit previously unidentified patterns as well as a substantial average wave power increase of approximately 20% in most areas and up to 30% in a region off the northwest coast.

Suggested Citation

  • O’Connell, Ross & de Montera, Louis & Peters, Jared L. & Horion, Stéphanie, 2020. "An updated assessment of Ireland’s wave energy resource using satellite data assimilation and a revised wave period ratio," Renewable Energy, Elsevier, vol. 160(C), pages 1431-1444.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:1431-1444
    DOI: 10.1016/j.renene.2020.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cradden, L. & Kalogeri, C. & Barrios, I. Martinez & Galanis, G. & Ingram, D. & Kallos, G., 2016. "Multi-criteria site selection for offshore renewable energy platforms," Renewable Energy, Elsevier, vol. 87(P1), pages 791-806.
    2. Tiny Remmers & Fiona Cawkwell & Cian Desmond & Jimmy Murphy & Eirini Politi, 2019. "The Potential of Advanced Scatterometer (ASCAT) 12.5 km Coastal Observations for Offshore Wind Farm Site Selection in Irish Waters," Energies, MDPI, vol. 12(2), pages 1-16, January.
    3. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    4. Gallagher, Sarah & Tiron, Roxana & Whelan, Eoin & Gleeson, Emily & Dias, Frédéric & McGrath, Ray, 2016. "The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility," Renewable Energy, Elsevier, vol. 88(C), pages 494-516.
    5. Rute Bento, A. & Martinho, Paulo & Guedes Soares, C., 2015. "Numerical modelling of the wave energy in Galway Bay," Renewable Energy, Elsevier, vol. 78(C), pages 457-466.
    6. Wanan Sheng & Hui Li, 2017. "A Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(4), pages 1-17, April.
    7. Guillou, Nicolas & Chapalain, Georges, 2015. "Numerical modelling of nearshore wave energy resource in the Sea of Iroise," Renewable Energy, Elsevier, vol. 83(C), pages 942-953.
    8. Liang, Bingchen & Fan, Fei & Yin, Zegao & Shi, Hongda & Lee, Dongyong, 2013. "Numerical modelling of the nearshore wave energy resources of Shandong peninsula, China," Renewable Energy, Elsevier, vol. 57(C), pages 330-338.
    9. Folley, M. & Whittaker, T.J.T., 2009. "Analysis of the nearshore wave energy resource," Renewable Energy, Elsevier, vol. 34(7), pages 1709-1715.
    10. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    11. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    12. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    2. Zhongliang Meng & Yun Chen & Shizhen Li, 2022. "The Shape Optimization and Experimental Research of Heave Plate Applied to the New Wave Energy Converter," Energies, MDPI, vol. 15(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    2. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2017. "Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf," Renewable Energy, Elsevier, vol. 114(PA), pages 59-71.
    3. Bingölbali, Bilal & Majidi, Ajab Gul & Akpınar, Adem, 2021. "Inter- and intra-annual wave energy resource assessment in the south-western Black Sea coast," Renewable Energy, Elsevier, vol. 169(C), pages 809-819.
    4. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    5. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    6. Liang, Bingchen & Shao, Zhuxiao & Wu, Yajie & Shi, Hongda & Liu, Zhen, 2017. "Numerical study to estimate the wave energy under Wave-Current Interaction in the Qingdao coast, China," Renewable Energy, Elsevier, vol. 101(C), pages 845-855.
    7. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    8. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    9. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    10. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    11. Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.
    12. Wan, Yong & Zheng, Chongwei & Li, Ligang & Dai, Yongshou & Esteban, M. Dolores & López-Gutiérrez, José-Santos & Qu, Xiaojun & Zhang, Xiaoyu, 2020. "Wave energy assessment related to wave energy convertors in the coastal waters of China," Energy, Elsevier, vol. 202(C).
    13. Sierra, Joan Pau & White, Adam & Mösso, Cesar & Mestres, Marc, 2017. "Assessment of the intra-annual and inter-annual variability of the wave energy resource in the Bay of Biscay (France)," Energy, Elsevier, vol. 141(C), pages 853-868.
    14. Soumya Ghosh & Mrinmoy Majumder & Manish Pal, 2018. "Application of metaheuristic algorithm to identify priority parameters for the selection of feasible location having optimum wave energy potential," Energy & Environment, , vol. 29(1), pages 3-28, February.
    15. Yong Wan & Chenqing Fan & Jie Zhang & Junmin Meng & Yongshou Dai & Ligang Li & Weifeng Sun & Peng Zhou & Jing Wang & Xudong Zhang, 2017. "Wave Energy Resource Assessment off the Coast of China around the Zhoushan Islands," Energies, MDPI, vol. 10(9), pages 1-25, September.
    16. Wanan Sheng & Hui Li & Jimmy Murphy, 2017. "An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(8), pages 1-17, August.
    17. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
    18. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
    19. Sun, Peidong & Xu, Bin & Wang, Jichao, 2022. "Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline," Applied Energy, Elsevier, vol. 324(C).
    20. Jahangir, Mohammad Hossein & Mazinani, Mehran, 2020. "Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea," Renewable Energy, Elsevier, vol. 152(C), pages 331-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:1431-1444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.