IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p460-d94800.html
   My bibliography  Save this article

A Method for Energy and Resource Assessment of Waves in Finite Water Depths

Author

Listed:
  • Wanan Sheng

    (Centre for Marine and Renewable Energy (MaREI), Environmental Research Institute, University College Cork, Cork P43 C573, Ireland)

  • Hui Li

    (College of Mechanical and Energy Engineering, Jimei University, Xiamen 361021, China)

Abstract

This paper presents a new method for improving the assessment of energy and resources of waves in the cases of finite water depths in which the historical and some ongoing sea wave measurements are simply given in forms of scatter diagrams or the forms of (significant) wave heights and the relevant statistical wave periods, whilst the detailed spectrum information has been discarded, thus no longer available for the purpose of analysis. As a result of such simplified wave data, the assessment for embracing the effects of water depths on wave energy and resources becomes either difficult or inaccurate. In many practical cases, the effects of water depths are simply ignored because the formulas for deep-water waves are frequently employed. This simplification may cause large energy under-estimations for the sea waves in finite water depths. To improve the wave energy assessment for such much-simplified wave data, an approximate method is proposed for approximating the effect of water depth in this research, for which the wave energy period or the calculated peak period can be taken as the reference period for implementing the approximation. The examples for both theoretical and measured spectra show that the proposed method can significantly reduce the errors on wave energy assessment due to the approximations and inclusions of the effects of finite water depths.

Suggested Citation

  • Wanan Sheng & Hui Li, 2017. "A Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(4), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:460-:d:94800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iglesias, G. & López, M. & Carballo, R. & Castro, A. & Fraguela, J.A. & Frigaard, P., 2009. "Wave energy potential in Galicia (NW Spain)," Renewable Energy, Elsevier, vol. 34(11), pages 2323-2333.
    2. Arinaga, Randi A. & Cheung, Kwok Fai, 2012. "Atlas of global wave energy from 10 years of reanalysis and hindcast data," Renewable Energy, Elsevier, vol. 39(1), pages 49-64.
    3. Stopa, Justin E. & Cheung, Kwok Fai & Chen, Yi-Leng, 2011. "Assessment of wave energy resources in Hawaii," Renewable Energy, Elsevier, vol. 36(2), pages 554-567.
    4. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    5. Folley, M. & Whittaker, T.J.T., 2009. "Analysis of the nearshore wave energy resource," Renewable Energy, Elsevier, vol. 34(7), pages 1709-1715.
    6. Lenee-Bluhm, Pukha & Paasch, Robert & Özkan-Haller, H. Tuba, 2011. "Characterizing the wave energy resource of the US Pacific Northwest," Renewable Energy, Elsevier, vol. 36(8), pages 2106-2119.
    7. Ramos, V. & Ringwood, John V., 2016. "Exploring the utility and effectiveness of the IEC (International Electrotechnical Commission) wave energy resource assessment and characterisation standard: A case study," Energy, Elsevier, vol. 107(C), pages 668-682.
    8. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    9. Iglesias, G. & Carballo, R., 2010. "Wave energy and nearshore hot spots: The case of the SE Bay of Biscay," Renewable Energy, Elsevier, vol. 35(11), pages 2490-2500.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orphin, Jarrah & Nader, Jean-Roch & Penesis, Irene, 2022. "Size matters: Scale effects of an OWC wave energy converter," Renewable Energy, Elsevier, vol. 185(C), pages 111-122.
    2. Amarouche, Khalid & Akpınar, Adem & Bachari, Nour El Islam & Houma, Fouzia, 2020. "Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast," Renewable Energy, Elsevier, vol. 153(C), pages 840-860.
    3. Shi, Xueli & Liang, Bingchen & Du, Shengtao & Shao, Zhuxiao & Li, Shaowu, 2022. "Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation," Renewable Energy, Elsevier, vol. 199(C), pages 1381-1407.
    4. Orphin, Jarrah & Nader, Jean-Roch & Penesis, Irene, 2021. "Uncertainty analysis of a WEC model test experiment," Renewable Energy, Elsevier, vol. 168(C), pages 216-233.
    5. Wanan Sheng & Hui Li & Jimmy Murphy, 2017. "An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(8), pages 1-17, August.
    6. Santo, H. & Taylor, P.H. & Stansby, P.K., 2020. "The performance of the three-float M4 wave energy converter off Albany, on the south coast of western Australia, compared to Orkney (EMEC) in the U.K," Renewable Energy, Elsevier, vol. 146(C), pages 444-459.
    7. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Sankaran, Adarsh & Deo, Ravinesh C. & Xiao, Fuyuan & Zhu, Shuyu, 2021. "Advanced extreme learning machines vs. deep learning models for peak wave energy period forecasting: A case study in Queensland, Australia," Renewable Energy, Elsevier, vol. 177(C), pages 1031-1044.
    8. O’Connell, Ross & de Montera, Louis & Peters, Jared L. & Horion, Stéphanie, 2020. "An updated assessment of Ireland’s wave energy resource using satellite data assimilation and a revised wave period ratio," Renewable Energy, Elsevier, vol. 160(C), pages 1431-1444.
    9. Choupin, O. & Têtu, A. & Del Río-Gamero, B. & Ferri, F. & Kofoed, JP., 2022. "Premises for an annual energy production and capacity factor improvement towards a few optimised wave energy converters configurations and resources pairs," Applied Energy, Elsevier, vol. 312(C).
    10. Choupin, Ophelie & Del Río-Gamero, B. & Schallenberg-Rodríguez, Julieta & Yánez-Rosales, Pablo, 2022. "Integration of assessment-methods for wave renewable energy: Resource and installation feasibility," Renewable Energy, Elsevier, vol. 185(C), pages 455-482.
    11. Raúl Cascajo & Rafael Molina & Luís Pérez-Rojas, 2022. "Sectoral Analysis of the Fundamental Criteria for the Evaluation of the Viability of Wave Energy Generation Facilities in Ports—Application of the Delphi Methodology," Energies, MDPI, vol. 15(7), pages 1-25, April.
    12. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    13. Guillou, Nicolas, 2020. "Estimating wave energy flux from significant wave height and peak period," Renewable Energy, Elsevier, vol. 155(C), pages 1383-1393.
    14. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    15. Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanan Sheng & Hui Li & Jimmy Murphy, 2017. "An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(8), pages 1-17, August.
    2. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    3. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    4. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    5. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    6. Liang, Bingchen & Fan, Fei & Yin, Zegao & Shi, Hongda & Lee, Dongyong, 2013. "Numerical modelling of the nearshore wave energy resources of Shandong peninsula, China," Renewable Energy, Elsevier, vol. 57(C), pages 330-338.
    7. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    8. García-Medina, Gabriel & Özkan-Haller, H. Tuba & Ruggiero, Peter, 2014. "Wave resource assessment in Oregon and southwest Washington, USA," Renewable Energy, Elsevier, vol. 64(C), pages 203-214.
    9. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    10. Hadadpour, Sanaz & Etemad-Shahidi, Amir & Jabbari, Ebrahim & Kamranzad, Bahareh, 2014. "Wave energy and hot spots in Anzali port," Energy, Elsevier, vol. 74(C), pages 529-536.
    11. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
    12. Wan, Yong & Zheng, Chongwei & Li, Ligang & Dai, Yongshou & Esteban, M. Dolores & López-Gutiérrez, José-Santos & Qu, Xiaojun & Zhang, Xiaoyu, 2020. "Wave energy assessment related to wave energy convertors in the coastal waters of China," Energy, Elsevier, vol. 202(C).
    13. Zodiatis, George & Galanis, George & Nikolaidis, Andreas & Kalogeri, Christina & Hayes, Dan & Georgiou, Georgios C. & Chu, Peter C. & Kallos, George, 2014. "Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study," Renewable Energy, Elsevier, vol. 69(C), pages 311-323.
    14. Kamranzad, Bahareh & Chegini, Vahid & Etemad-Shahidi, Amir, 2016. "Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves," Renewable Energy, Elsevier, vol. 94(C), pages 341-352.
    15. Zhou, Guoqing & Huang, Jingjin & Zhang, Guangyun, 2015. "Evaluation of the wave energy conditions along the coastal waters of Beibu Gulf, China," Energy, Elsevier, vol. 85(C), pages 449-457.
    16. Iglesias, G. & Carballo, R., 2011. "Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain)," Energy, Elsevier, vol. 36(9), pages 5525-5531.
    17. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    18. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    19. Yong Wan & Chenqing Fan & Jie Zhang & Junmin Meng & Yongshou Dai & Ligang Li & Weifeng Sun & Peng Zhou & Jing Wang & Xudong Zhang, 2017. "Wave Energy Resource Assessment off the Coast of China around the Zhoushan Islands," Energies, MDPI, vol. 10(9), pages 1-25, September.
    20. Halliday, J. Ross & Dorrell, David G. & Wood, Alan R., 2011. "An application of the Fast Fourier Transform to the short-term prediction of sea wave behaviour," Renewable Energy, Elsevier, vol. 36(6), pages 1685-1692.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:460-:d:94800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.