IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p502-514.html
   My bibliography  Save this article

Modelling of operation and optimum design of a wave power take-off system with energy storage

Author

Listed:
  • Bonovas, Markos I.
  • Anagnostopoulos, Ioannis S.

Abstract

Wave energy is claimed to be the most powerful source of renewable energy and at the same time an area of research with many prospects for development. The subject of the present analysis is a case study of a heaving wave energy converter harnessing and storing wave energy to an onshore hydroelectric plant through water pumping. During the first phase the system variables of wave amplitude and period are fixed as the characteristics of an Airy Theory-based model. Construction parameters are optimized by evolutionary algorithms, incorporated in EASY software with two objective functions: the total investment cost and the flow rate in the reservoir. The following dynamic analysis is performed depending on the optimum set of parameters but also is constrained by criteria of operation. A maximum capture width ratio of 45% for a standard harmonic wave is achieved, which is comparable with other WECs' performance. Sensitivity tests for the free design parameters of the mechanism are also carried out. For a more realistic scenario of sea states, a specific area's wave time series provided the yearly corresponding duration curves and a second optimization analysis is performed. The attainable average efficiency (stored energy) of the system was almost 20%, showing high sensitivity of the absorbed power on the sea state. In order to increase the annual energy absorption and storage of a single device at real sea conditions, a mechanism for real-time adjustment of the piston pump diameter to better comply with varying wave characteristics, is proposed and modelled. The design of the modified system is optimized again to demonstrate its improved performance and efficiency, which is about 30% higher than the initial design.

Suggested Citation

  • Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:502-514
    DOI: 10.1016/j.renene.2019.08.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119312881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCabe, A.P. & Bradshaw, A. & Meadowcroft, J.A.C. & Aggidis, G., 2006. "Developments in the design of the PS Frog Mk 5 wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 141-151.
    2. Vakis, Antonis I. & Anagnostopoulos, John S., 2016. "Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter," Renewable Energy, Elsevier, vol. 96(PA), pages 531-547.
    3. Doyle, Simeon & Aggidis, George A., 2019. "Development of multi-oscillating water columns as wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 75-86.
    4. Liang, Changwei & Zuo, Lei, 2017. "On the dynamics and design of a two-body wave energy converter," Renewable Energy, Elsevier, vol. 101(C), pages 265-274.
    5. Truong, Dinh Quang & Ahn, Kyoung Kwan, 2014. "Development of a novel point absorber in heave for wave energy conversion," Renewable Energy, Elsevier, vol. 65(C), pages 183-191.
    6. Kara, Fuat, 2016. "Time domain prediction of power absorption from ocean waves with wave energy converter arrays," Renewable Energy, Elsevier, vol. 92(C), pages 30-46.
    7. Shadman, Milad & Estefen, Segen F. & Rodriguez, Claudio A. & Nogueira, Izabel C.M., 2018. "A geometrical optimization method applied to a heaving point absorber wave energy converter," Renewable Energy, Elsevier, vol. 115(C), pages 533-546.
    8. Bubbar, K. & Buckham, B. & Wild, P., 2018. "A method for comparing wave energy converter conceptual designs based on potential power capture," Renewable Energy, Elsevier, vol. 115(C), pages 797-807.
    9. Babarit, A., 2013. "On the park effect in arrays of oscillating wave energy converters," Renewable Energy, Elsevier, vol. 58(C), pages 68-78.
    10. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    11. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    12. Sharay Astariz & Gregorio Iglesias, 2015. "Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect," Energies, MDPI, vol. 8(7), pages 1-23, July.
    13. Ahn, K.K. & Truong, D.Q. & Tien, Hoang Huu & Yoon, Jong Il, 2012. "An innovative design of wave energy converter," Renewable Energy, Elsevier, vol. 42(C), pages 186-194.
    14. Tiron, Roxana & Mallon, Fionn & Dias, Frédéric & Reynaud, Emmanuel G., 2015. "The challenging life of wave energy devices at sea: A few points to consider," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1263-1272.
    15. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    16. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    17. Kostas Belibassakis & Markos Bonovas & Eugen Rusu, 2018. "A Novel Method for Estimating Wave Energy Converter Performance in Variable Bathymetry Regions and Applications," Energies, MDPI, vol. 11(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neshat, Mehdi & Mirjalili, Seyedali & Sergiienko, Nataliia Y. & Esmaeilzadeh, Soheil & Amini, Erfan & Heydari, Azim & Garcia, Davide Astiaso, 2022. "Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia," Energy, Elsevier, vol. 239(PE).
    2. Rasool, Safdar & Muttaqi, Kashem M. & Sutanto, Danny, 2020. "Modelling of a wave-to-wire system for a wave farm and its response analysis against power quality and grid codes," Renewable Energy, Elsevier, vol. 162(C), pages 2041-2055.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erfan Amini & Rojin Asadi & Danial Golbaz & Mahdieh Nasiri & Seyed Taghi Omid Naeeni & Meysam Majidi Nezhad & Giuseppe Piras & Mehdi Neshat, 2021. "Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea," Sustainability, MDPI, vol. 13(19), pages 1-21, October.
    2. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    3. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
    4. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    5. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    6. Chen, Xianzhi & Lu, Yunfei & Zhou, Songlin & Chen, Weixing, 2024. "Design, modeling and performance analysis of a deformable double-float wave energy converter for AUVs," Energy, Elsevier, vol. 292(C).
    7. Shi, Hongda & Cao, Feifei & Liu, Zhen & Qu, Na, 2016. "Theoretical study on the power take-off estimation of heaving buoy wave energy converter," Renewable Energy, Elsevier, vol. 86(C), pages 441-448.
    8. Anthony Roy & François Auger & Florian Dupriez-Robin & Salvy Bourguet & Quoc Tuan Tran, 2018. "Electrical Power Supply of Remote Maritime Areas: A Review of Hybrid Systems Based on Marine Renewable Energies," Energies, MDPI, vol. 11(7), pages 1-27, July.
    9. Wang, LiGuo & Lin, MaoFeng & Tedeschi, Elisabetta & Engström, Jens & Isberg, Jan, 2020. "Improving electric power generation of a standalone wave energy converter via optimal electric load control," Energy, Elsevier, vol. 211(C).
    10. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    11. Kovaleva, Olga & Eelsalu, Maris & Soomere, Tarmo, 2017. "Hot-spots of large wave energy resources in relatively sheltered sections of the Baltic Sea coast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 424-437.
    12. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.
    13. Zitti, Gianluca & Brocchini, Maurizio, 2024. "The role of size and inertia on the hydrodynamics of a self-reacting heave single point absorber wave energy converter," Renewable Energy, Elsevier, vol. 229(C).
    14. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    15. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    16. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    18. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2022. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 1: Numerical modelling," Renewable Energy, Elsevier, vol. 181(C), pages 1402-1418.
    19. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
    20. Teixeira-Duarte, Felipe & Clemente, Daniel & Giannini, Gianmaria & Rosa-Santos, Paulo & Taveira-Pinto, Francisco, 2022. "Review on layout optimization strategies of offshore parks for wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:502-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.