IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i3p1181-1197d23785.html
   My bibliography  Save this article

Improved Control Strategy for DFIG Wind Turbines for Low Voltage Ride Through

Author

Listed:
  • Zaijun Wu

    (School of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, Jiangsu, China)

  • Chanxia Zhu

    (School of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, Jiangsu, China)

  • Minqiang Hu

    (School of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, Jiangsu, China)

Abstract

This paper presents an improved control strategy for both the rotor side converter (RSC) and grid side converter (GSC) of a doubly fed induction generator (DFIG)-based wind turbine (WT) system to enhance the low voltage ride through (LVRT) capability. Within the proposed control strategy, the RSC control introduces transient feed-forward compensation terms to mitigate the high frequency harmonic components and reduce the surge in the rotor currents. The proposed GSC control scheme also introduces a compensation term reflecting the instantaneous variation of the output power of the rotor side converter with consideration of the instantaneous power of grid filter impendence to keep the dc-link voltage nearly constant during the grid faults. To provide precise control, non-ideal proportional resonant (PR) controllers for both the RSC and GSC current regulation are employed to further improve dynamic performance. Simulations performed in Matlab/Simulink verify the effectiveness of the proposed control strategy.

Suggested Citation

  • Zaijun Wu & Chanxia Zhu & Minqiang Hu, 2013. "Improved Control Strategy for DFIG Wind Turbines for Low Voltage Ride Through," Energies, MDPI, vol. 6(3), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:3:p:1181-1197:d:23785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/3/1181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/3/1181/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor F. Mendes & Frederico F. Matos & Silas Y. Liu & Allan F. Cupertino & Heverton A. Pereira & Clodualdo V. De Sousa, 2016. "Low Voltage Ride-Through Capability Solutions for Permanent Magnet Synchronous Wind Generators," Energies, MDPI, vol. 9(1), pages 1-19, January.
    2. Hao Dong & Hongbin Wu & Jing Pan & Yu Chen & Bin Xu, 2018. "Research on Double-Fed Induction Generator Low Voltage Ride Through Based on Double Braking Resistors Using Fuzzy Control," Energies, MDPI, vol. 11(5), pages 1-16, May.
    3. Jaime Rodríguez Arribas & Adrián Fernández Rodríguez & Ángel Hermoso Muñoz & Carlos Veganzones Nicolás, 2014. "Low Voltage Ride-through in DFIG Wind Generators by Controlling the Rotor Current without Crowbars," Energies, MDPI, vol. 7(2), pages 1-22, January.
    4. Saeed A. AlGhamdi, 2023. "Improvement of Fault Ride-Through Capability of Grid Connected Wind Turbine Based on a Switched Reluctance Generator Using a Dynamic Voltage Restorer," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    5. Wen-Yeau Chang, 2013. "Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method," Energies, MDPI, vol. 6(9), pages 1-18, September.
    6. Fan Xiao & Zhe Zhang & Xianggen Yin, 2015. "Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions," Energies, MDPI, vol. 8(10), pages 1-22, September.
    7. Flávio Oliveira & Arthur Amorim & Lucas Encarnação & Jussara Fardin & Marcos Orlando & Selênio Silva & Domingos Simonetti, 2015. "Enhancing LVRT of DFIG by Using a Superconducting Current Limiter on Rotor Circuit," Energies, MDPI, vol. 9(1), pages 1-12, December.
    8. Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:3:p:1181-1197:d:23785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.