IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p2983-d559287.html
   My bibliography  Save this article

High Precision LSTM Model for Short-Time Load Forecasting in Power Systems

Author

Listed:
  • Tomasz Ciechulski

    (Institute of Electronic Systems, Faculty of Electronics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland)

  • Stanisław Osowski

    (Institute of Electronic Systems, Faculty of Electronics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
    Faculty of Electrical Engineering, Warsaw University of Technology, pl. Politechniki 1, 00-661 Warsaw, Poland)

Abstract

The paper presents the application of recurrent LSTM neural networks for short-time load forecasting in the Polish Power System (PPS) and a small region of a power system in Central Poland. The objective of the present work was to develop an efficient and accurate method of forecasting the 24-h pattern of power load with a 1-h and 24-h horizon. LSTM showed effectiveness in predicting the irregular trends in time series. The final forecast is estimated using an ensemble consisted of five independent predictions. Numerical experiments proved the superiority of the ensemble above single predictor resulting in a reduction of the MAPE the RMSE error by more than 6% in both forecasting tasks.

Suggested Citation

  • Tomasz Ciechulski & Stanisław Osowski, 2021. "High Precision LSTM Model for Short-Time Load Forecasting in Power Systems," Energies, MDPI, vol. 14(11), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2983-:d:559287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/2983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/2983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz Ciechulski & Stanisław Osowski, 2020. "Deep Learning Approach to Power Demand Forecasting in Polish Power System," Energies, MDPI, vol. 13(22), pages 1-13, November.
    2. Alfredo Nespoli & Emanuele Ogliari & Silvia Pretto & Michele Gavazzeni & Sonia Vigani & Franco Paccanelli, 2021. "Electrical Load Forecast by Means of LSTM: The Impact of Data Quality," Forecasting, MDPI, vol. 3(1), pages 1-11, February.
    3. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting," Energies, MDPI, vol. 11(1), pages 1-13, January.
    4. Ibrahim Salem Jahan & Vaclav Snasel & Stanislav Misak, 2020. "Intelligent Systems for Power Load Forecasting: A Study Review," Energies, MDPI, vol. 13(22), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro M. R. Bento & Jose A. N. Pombo & Maria R. A. Calado & Silvio J. P. S. Mariano, 2021. "Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting," Energies, MDPI, vol. 14(21), pages 1-21, November.
    2. Robert Basmadjian & Amirhossein Shaafieyoun & Sahib Julka, 2021. "Day-Ahead Forecasting of the Percentage of Renewables Based on Time-Series Statistical Methods," Energies, MDPI, vol. 14(21), pages 1-23, November.
    3. Stanislaw Osowski & Robert Szmurlo & Krzysztof Siwek & Tomasz Ciechulski, 2022. "Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    4. Zhoufan Chen & Congmin Wang & Longjin Lv & Liangzhong Fan & Shiting Wen & Zhengtao Xiang, 2023. "Research on Peak Load Prediction of Distribution Network Lines Based on Prophet-LSTM Model," Sustainability, MDPI, vol. 15(15), pages 1-16, July.
    5. Md Jamal Ahmed Shohan & Md Omar Faruque & Simon Y. Foo, 2022. "Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model," Energies, MDPI, vol. 15(6), pages 1-18, March.
    6. Miguel A. Jaramillo-Morán & Daniel Fernández-Martínez & Agustín García-García & Diego Carmona-Fernández, 2021. "Improving Artificial Intelligence Forecasting Models Performance with Data Preprocessing: European Union Allowance Prices Case Study," Energies, MDPI, vol. 14(23), pages 1-23, November.
    7. Wenna Zhao & Guoxing Mu & Yanfang Zhu & Limei Xu & Deliang Zhang & Hongwei Huang, 2023. "Research on Electric Load Forecasting and User Benefit Maximization Under Demand-Side Response," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 14(1), pages 1-20, January.
    8. Suiling Wang & Zhiqiang Jiang & Hairong Zhang, 2022. "Correction of Reservoir Runoff Forecast Based on Multi-scenario Division and Multi Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5277-5296, October.
    9. Bibi Ibrahim & Luis Rabelo & Edgar Gutierrez-Franco & Nicolas Clavijo-Buritica, 2022. "Machine Learning for Short-Term Load Forecasting in Smart Grids," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Jamal Ahmed Shohan & Md Omar Faruque & Simon Y. Foo, 2022. "Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model," Energies, MDPI, vol. 15(6), pages 1-18, March.
    2. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
    3. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    4. Ren, Simiao & Hu, Wayne & Bradbury, Kyle & Harrison-Atlas, Dylan & Malaguzzi Valeri, Laura & Murray, Brian & Malof, Jordan M., 2022. "Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis," Applied Energy, Elsevier, vol. 326(C).
    5. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    6. Leonard Burg & Gonca Gürses-Tran & Reinhard Madlener & Antonello Monti, 2021. "Comparative Analysis of Load Forecasting Models for Varying Time Horizons and Load Aggregation Levels," Energies, MDPI, vol. 14(21), pages 1-16, November.
    7. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    8. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    9. Musaed Alhussein & Syed Irtaza Haider & Khursheed Aurangzeb, 2019. "Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance," Energies, MDPI, vol. 12(8), pages 1-27, April.
    10. Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
    11. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    12. Yanbin Li & Zhen Li, 2019. "Forecasting of Coal Demand in China Based on Support Vector Machine Optimized by the Improved Gravitational Search Algorithm," Energies, MDPI, vol. 12(12), pages 1-20, June.
    13. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    14. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    15. Marek Borowski & Klaudia Zwolińska, 2020. "Prediction of Cooling Energy Consumption in Hotel Building Using Machine Learning Techniques," Energies, MDPI, vol. 13(23), pages 1-19, November.
    16. Bin Li & Mingzhen Lu & Yiyi Zhang & Jia Huang, 2019. "A Weekend Load Forecasting Model Based on Semi-Parametric Regression Analysis Considering Weather and Load Interaction," Energies, MDPI, vol. 12(20), pages 1-19, October.
    17. Seung-Min Jung & Sungwoo Park & Seung-Won Jung & Eenjun Hwang, 2020. "Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    18. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    19. Luis Lopez & Ingrid Oliveros & Luis Torres & Lacides Ripoll & Jose Soto & Giovanny Salazar & Santiago Cantillo, 2020. "Prediction of Wind Speed Using Hybrid Techniques," Energies, MDPI, vol. 13(23), pages 1-13, November.
    20. Duwon Choi & Youngkuk An & Nankyu Lee & Jinil Park & Jonghwa Lee, 2020. "Comparative Study of Physics-Based Modeling and Neural Network Approach to Predict Cooling in Vehicle Integrated Thermal Management System," Energies, MDPI, vol. 13(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2983-:d:559287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.