IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11667-d1205052.html
   My bibliography  Save this article

Research on Peak Load Prediction of Distribution Network Lines Based on Prophet-LSTM Model

Author

Listed:
  • Zhoufan Chen

    (School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442000, China
    Shool of Computer and Data Engineering, NingboTech University, Ningbo 315000, China)

  • Congmin Wang

    (State Grid Zhejiang Electric Power Co., Ltd., Ningbo Power Supply Company, Ningbo 315000, China)

  • Longjin Lv

    (School of Finance and Information, Ningbo University of Finance and Economics, Ningbo 315000, China)

  • Liangzhong Fan

    (Shool of Computer and Data Engineering, NingboTech University, Ningbo 315000, China)

  • Shiting Wen

    (Shool of Computer and Data Engineering, NingboTech University, Ningbo 315000, China)

  • Zhengtao Xiang

    (School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442000, China)

Abstract

The increasing demand for precise load forecasting for distribution networks has become a crucial requirement due to the continual surge in power consumption. Accurate forecasting of peak loads for distribution networks is paramount to ensure that power grids operate smoothly and to optimize their configuration. Many load forecasting methods do not meet the requirements for accurate data and trend fitting. To address these issues, this paper presents a novel forecasting model called Prophet-LSTM, which combines the strengths of the Prophet model’s high trend fitting and LSTM model’s high prediction accuracy, resulting in improved accuracy and effectiveness of peak load forecasting. The proposed algorithm models the distribution network peak load using the Prophet-LSTM algorithm. The researchers then analyzed the experimental data and model of the algorithm to evaluate its effectiveness. We found that the Prophet-LSTM algorithm outperformed the Prophet and LSTM models individually in peak load prediction. We evaluate the proposed model against commonly used forecasting models using MAE (mean absolute error) and RMSE (root mean square error) as evaluation metrics. The results indicate that the proposed model has better forecasting accuracy and stability. As a result, it can predict the peak load of distribution networks more accurately. In conclusion, this study offers a valuable contribution to load forecasting for distribution networks. The proposed Prophet-LSTM algorithm provides a more precise and stable prediction, making it a promising approach for future applications in distribution network load forecasting.

Suggested Citation

  • Zhoufan Chen & Congmin Wang & Longjin Lv & Liangzhong Fan & Shiting Wen & Zhengtao Xiang, 2023. "Research on Peak Load Prediction of Distribution Network Lines Based on Prophet-LSTM Model," Sustainability, MDPI, vol. 15(15), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11667-:d:1205052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longjin Lv & Lihua Luo & Yueping Yang, 2022. "Distribution Line Load Predicting and Heavy Overload Warning Model Based on Prophet Method," Sustainability, MDPI, vol. 14(21), pages 1-10, October.
    2. Niu, Dongxiao & Ji, Zhengsen & Li, Wanying & Xu, Xiaomin & Liu, Da, 2021. "Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization," Energy, Elsevier, vol. 234(C).
    3. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    4. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    5. Sujit Kumar Panda & Alok Kumar Jagadev & Sachi Nandan Mohanty, 2018. "Forecasting Methods in Electric Power Sector," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 7(1), pages 1-21, January.
    6. Tomasz Ciechulski & Stanisław Osowski, 2021. "High Precision LSTM Model for Short-Time Load Forecasting in Power Systems," Energies, MDPI, vol. 14(11), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minan Tang & Changyou Wang & Jiandong Qiu & Hanting Li & Xi Guo & Wenxin Sheng, 2024. "Short-Term Load Forecasting of Electric Vehicle Charging Stations Accounting for Multifactor IDBO Hybrid Models," Energies, MDPI, vol. 17(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    2. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    3. Guo‐Feng Fan & Yan‐Hui Guo & Jia‐Mei Zheng & Wei‐Chiang Hong, 2020. "A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back‐propagation neural network for mid‐short‐term load forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 737-756, August.
    4. Barman, Mayur & Dev Choudhury, Nalin Behari, 2019. "Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept," Energy, Elsevier, vol. 174(C), pages 886-896.
    5. Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
    6. Zhang, Guoqiang & Guo, Jifeng, 2020. "A novel ensemble method for hourly residential electricity consumption forecasting by imaging time series," Energy, Elsevier, vol. 203(C).
    7. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    8. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    9. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    10. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    11. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    12. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    13. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    14. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    15. Di Wang & Sha Li & Xiaojin Fu, 2024. "Short-Term Power Load Forecasting Based on Secondary Cleaning and CNN-BILSTM-Attention," Energies, MDPI, vol. 17(16), pages 1-23, August.
    16. Xiwen Cui & Xinyu Guan & Dongyu Wang & Dongxiao Niu & Xiaomin Xu, 2022. "Can China Meet Its 2030 Total Energy Consumption Target? Based on an RF-SSA-SVR-KDE Model," Energies, MDPI, vol. 15(16), pages 1-13, August.
    17. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    18. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    19. Deyun Wang & Yanling Liu & Zeng Wu & Hongxue Fu & Yong Shi & Haixiang Guo, 2018. "Scenario Analysis of Natural Gas Consumption in China Based on Wavelet Neural Network Optimized by Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 11(4), pages 1-16, April.
    20. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11667-:d:1205052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.